CONSTRUCTION SURVEYING

JANUARY 1985

DISTRIBUTION RESTRICTION. This publication contains technical or operational information that is for official Government use only. Distribution is limited to US Government agencies. Requests from outside the US Government for release of this publication under the Freedom of Information Act or the Foreign Military Sales Program must be made to HQ, TRADOC, Fort Monroe, VA 23651.

This manual contains copyrighted material reproduced by permission of the American Railway Engineering Association and the Macmillan Publishing Co., Inc.

FIELD MANUAL

No. E-233

HEADQUARTERS
DEPARTMENT OF THE ARMY
WASHINGTON, DC, 4 JANUARY 1985

CONSTRUCTION SURVEYING

TABLE OF CONTENTS

Page
PREFACE
CHAPTER 1.SURVEY OBJECTIVES 1-1
CHAPTER 2. ROAD SURVEYING 2-1
Section I. Reconnaissance survey 2-1
II. Preliminary survey 2-3
III. Final location survey 2-4
IV. Construction layout survey 2-5
CHAPTER 3. CURVES 3-1
Section I. Simple horizontal curves 3-1
II. Obstacles to curve location 3-12
III. Compound and reverse curves 3-17
IV. Transition spirals 3-24
V. Vertical curves 3-35
CHAPTER 4. EARTHWORK 4-1
Section I. Planning of earthwork operations 4-1
II. Areas 4-3
III. Earth and rock excavation 4-9
CHAPTER 5. BRIDGE SURVEYING 5-1
Section I. Location 5-1
II. Bridge site layout 5-4
CHAPTER 6. SITE LAYOUT 6-1
Section I. Building layout 6-1
II. Utilities layout 6-4
*This manual supersedes TM 5-233, 14 October 1968.
Page
CHAPTER 7. TRAVERSE 7-1
Section I. Selection of traverse 7-1
II. Field survey 7-3
III. Computations 7-5
APPENDIX A. TABLES A-1
APPENDIX B. SAMPLE NOTES (CONSTRUCTION SURVEY) B-1
GLOSSARY Glossary-1
REFERENCES References-1
INDEX Index-1

LIST OF FIGURES AND TABLES

Figures

Figure 2-1. Grade stakes 2-7
Figure 2-2. Setting slope stakes 2-8
Figure 2-3. Marking slope stakes 2-9
Figure 2-4. Slope stakes (HI above grade elevation) 2-9
Figure 2-5. Slope stakes (HI below grade elevation) 2-10
Figure 2-6. Layout of a culvert 2-11
Figure 3-1. Horizontal curves 3-1
Figure 3-2. Elements of a simple curve 3-3
Figure 3-3. Degree of curve 3-4
Figure 3-4. Deflection angles 3-5
Figure 3-5. Subchord corrections 3-11
Figure 3-6. Inaccessible PI 3-12
Figure 3-7. Inaccessible PC 3-13
Figure 3-8. Inaccessible PT 3-14
Figure 3-9. Obstacle on a curve 3-15
Figure 3-10. Curve through a fixed point 3-16
Figure 3-11. Compound curves 3-19
Figure 3-12. Reverse curve between successive PIs 3-21
Figure 3-13. Reverse curve connecting parallel tangents 3-22
Figure 3-14. Reverse curve connecting diverging tangents 3-23
Page
Figure 3-15. Simple curve connected to its tangent with spirals 3-25
Figure 3-16. Enlargement of spiral of figure 3-15 3-27
Figure 3-17. Staking a spiraled circular curve 3-32
Figure 3-18. Sample of spiral field notes 3-35
Figure 3-19. Grade lines connected by a vertical curve 3-37
Figure 3-20. Typical solution of a sag curve 3-38
Figure 3-21. Typical solution of a summit curve 3-39
Figure 4-1. Typical cross sections 4-2
Figure 4-2. Area of irregular cross sections 4-3
Figure 4-3. Subdividing cross sections 4-4
Figure 4-4. Cross-section area by stripper method 4-5
Figure 4-5. Cross-section area by double-meridian-distance method 4-7
Figure 4-6. Polar planimeter 4-8
Figure 4-7. Typical grid layout for borrow pits 4-11
Figure 5-1. Taking soundings 5-3
Figure 5-2. Staking an abutment 5-4
Figure 5-3. Staking wing walls 5-5
Figure 5-4. Locating piers 5-6
Figure 5-5. Positioning piles 5-9
Figure 6-1. Building layout 6-2
Figure 6-2. Batter boards 6-3
Figure 6-3. Sewer alignment 6-5
Figure 7-1. An open traverse 7-2
Figure 7-2. A loop traverse $7-3$
Figure 7-3. Relationship of azimuth and bearing 7-9
Figure 7-4. Determination of a bearing angle 7-9
Figure 7-5. Requirements for dN and dE 7-10
Figure 7-6. Relationship by quadrant and sign 7-11
Figure 7-7. Traverse computation of a loop traverse 7-13
Tables
Table 2-1. Road specifications 2-2
Table 3-1. Recommended superelevation and minimum transition lengths 3-29
Table 3-2. Coefficients of a_{1} for deflection angles to chord points 3-34

Acknowledgements

Acknowledgement is made to the following associations and companies for their permission to use in this manual the text and tables listed below.

Pages 3-25 through 3-28 and table A-9, Functions of the Ten-Chord Spiral, from A.R.E.A. Manual, Volume I. Copyright 1911 and 1950 by the American Railway Engineering Association. Reprinted by permission of the American Railway Engineering Association.

Table A-7, Deflections and Chords for 25-, 50-, and 100-Foot Arcs, from Route Surveys and Constructions by Harry Rubey. Copyright 1956 by Harry Rubey. Reprinted by permission of the Macmillan Publishing Co., Inc.

PREFACE

Purpose and Scope

This manual is a guide for engineering personnel conducting surveys in support of military construction. In addition to mathematical considerations, this manual offers a comprehensive analysis of problems which are typical in military surveying. It may be used for both training and seference.

Application

The material contained in this manual is applicable without modification to both nuclear and nonnuclear warfare.

User Information

Users of this publication are encouraged to recommend changes and submit comments for its improvement. Comments should be keyed to the specific page, paragraph, and line of text in which the change is recommended. Reasons will be provided for each comment to insure understanding and complete evaluation. Comments should be prepared, using DA Form 2028 (Recommended Changes to Publications and Blank Forms), and forwarded directly to the Commandant, US Army Engineer School, ATTN: ATZA-TD-P, Fort Belvoir, Virginina 22060-5291.

CHAPTER 1

SURVEY OBJECTIVES

DUTIES OF THE CONSTRUCTION SURVEYOR

In support of construction activities, the surveyor obtains the reconnaissance and preliminary data which are necessary at the planning stage. During the construction phase, the surveyor supports the effort as needed. Typical duties of the construction surveyor include-

- Determining distances, areas, and angles.
- Establishing reference points for both horizontal and vertical control.
- Setting stakes or otherwise marking lines, grades, and principal points.
- Determining profiles of the ground along given lines (centerlines and/or crosssection lines) to provide data for cuts, fills, and earthwork volumes.
- Preparing large-scale topographic maps using plane table or transit-stadia data to provide information for drainage and site design.
- Laying out structures, culverts, and bridge lines.
- Determining the vertical and horizontal placement of utilities.

ACCURACY OF SURVEYS

The precision of measurements varies with the type of work and the purpose of a survey. Location surveys require more accuracy than reconnaissance surveys, and the erection of structural steel requires greater precision in measurement than the initial grading of a roadbed.

The officer or NCO in charge of a project usually determines the degree of accuracy. The surveyor makes a practical analysis and chooses appropriate methods and procedures for each type of measurement. The surveyor must consider the allowable time, the tactical situation, the capabilities of construction forces, and the current conditions. The best surveyor is the one who runs a survey to the order of precision which is required by the job with a minimum of time, not the one who insists on extreme precision at all times.

Surveyors must always be on the alert for probable cumulative or systematic errors, which could be the result of maladjustment or calibration of equipment or error-producing practices. Laying out the foundations for certain types of machinery and establishing angular limits for fire on training ranges are examples of conditions which might demand a high degree of precision from the surveyor.

For the most part, the construction surveyor will not have to work to the most precise limits of the equipment. However, the surveyor should recognize the limits of the validity in the results. The surveyor cannot expect resultant data to have a greater degree of accuracy than that of the least precise measurement involved. The surveyor must analyze both angular and linear measurements, which are a part of the survey problem, in order to maintain comparable precision throughout.

FIELD NOTES

The quality and character of the surveyor's field notes are as important as the use of instruments. The comprehensiveness, neatness, and reliability of the surveyor's field notes measure ability. Numerical data, sketches, and explanatory notes must be so clear that they can be interpreted in only one way, the correct way. Office entries, such as computed or corrected values, should be clearly distinguishable from original material. This is often done by making office entries in red ink. Some good rules to follow in taking field notes are-

- Use a sharp, hard pencil (4H preferred).
- Do not crowd the data entered. Use additional pages.
- Keep sketches plain and uncluttered.
- Record numerical values so they always indicate the degree of precision to which a measurement is taken. For example, rod readings taken to the nearest 0.01 foot should be recorded as 5.30 feet, not as 5.3 feet.
- Use explanatory notes to supplement numerical data and sketches. These notes often replace sketches and are usually placed on the right-hand page on the same line as the numerical data they explain.
- Follow the basic note-keeping rules covered in TM 5-232.

METRIC SYSTEM

The military surveyor may work from data based upon the metric system of measurement or convert data_into metric equivalents. Tables A-13 and A-14 in appendix A provide metric conversions.

CHAPTER 2

ROAD SURVEYING

Section I. RECONNAISSANCE SURVEY

PREPARATION AND SCOPE

The reconnaissance survey is an extensive study of an entire area that might be used for a road or airfield. Its purpose is to eliminate those routes or sites which are impractical or unfeasible and to identify the more promising routes or sites.

Existing maps and aerial photographs may be of great help. Contour maps show the terrain features and the relief of an area. Aerial photographs show up-to-date planimetric details.

The reconnaissance survey must include all possible routes and sites. The reconnaissance survey report should summarize all the collected information, including a description of each route or site, a conclusion on the economy of its use, and, where possible, appropriate maps and aerial photographs.

Design

Design and military characteristics should be considered during the reconnaissance survey. Keep in mind that future operations may require an expanded road net. Á study of the route plans and specifications is necessary. If these are unavailable, use the following as guides.

- Locate portions of the new road along or over existing roads, railroads, or trails, whenever possible.
- Locate the road on high-bearing-strength soil that is stable and easily drained, avoiding swamps, marshes, and organic soil.
- Locate the road along ridges and streamlines, keeping drainage structures to a minimum. Keep the grade well above the high waterline when following a stream.
- Select a route as near to sources of material as practical, and locate the road along contour lines to avoid unnecessary earth work.
- Locate the road on the sunny side of hills and canyons, and on that side of the canyon wall where the inclination of the strata tends to support the road rather than cause the road to slide into the canyon.
- Locate roads in forward combat zones so that they are concealed and protected from enemy fire. This may at times conflict with engineering considerations.
- Select locations which conserve engineer assets, avoiding rockwork and excessive clearing.
- Avoid sharp curves and locations which involve bridging.

Roadway Criteria

To insure satisfactory results, study the engineering specifications of the road to be
built. If these are not available, use the information provided in table 2-1.

Table 2-1. Road specifications

WIDTHS

One-way road-11.5 feet or 3.5 meters minimum.

Two-way road-23 feet or 7.0 meters minimum.
Shoulders (each side)-4 feet or 1.5 meters minimum.

Clearing-6 feet or 2 meters each side of roadway.

GRADES

Absolute maximum-determined by the lowest maximum gradeability of vehicles using the road.

Normal maximum-10 percent.
Desired maximum-less than 6 percent; on sharp curves, less than 4 percent.

HORIZONTAL CURVES

Desired minimum radius-150 feet or 46 meters.

Absolute minimum radius- 80 feet or 25 meters.

VERTICAL CURVES

Minimum length on hill summits- 125 feet or 40 meters per 4 percent algebraic difference in grades.

Minimum length in hollows-100 feet or 30 meters per 4 percent algebraic difference in grades.

SIGHT DISTANCES

Absolute nonpassing minimum-200 feet or 60 meters.

Absolute passing minimum-350 feet or 110 meters.

SLOPES

Shoulders- $3 / 4$ inch per foot ($\mathrm{in} / \mathrm{ft}$) or 6 percent.
Crown (gravel and dirt)—1/2 to $3 / 4$ in/ft or 4 to 6 percent.

Crown (paved) $-1 / 4$ to $1 / 2 \mathrm{in} / \mathrm{ft}$ or 2 to 4 percent.
Cut and fill—variable, but normally about $11 / 2$ to 1.

DRAINAGE

Take advantage of natural drainage.
Locate above high waterline near streams or creeks.

Grade at least 5 feet or 1.6 meters above groundwater table.

TRAFFIC

Overhead clearance-14 feet or 4.3 meters minimum.

Traffic volume- $\mathbf{2 , 0 0 0}$ vehicles per lane per day.

Load capacity-sustain 18,000 pound equivalent axle load.

Turnouts (single lane)-minimum every $1 / 4$ mile or 0.4 kilometers recommended.

COLLECTION OF DATA

Upon completion, the reconnaissance survey should support the routes surveyed and provide a basis of study showing the advantages and disadvantages of all routes reconnoitered. Typical data collected in a reconnaissance survey are-

- Sketches of all routes reconnoitered.
- Reports of feasible routes. Data on clearing and grubbing.
- The number of stream crossings involving bridge spans exceeding 20 feet or 6 meters.
- The approximate number of culverts and spans less than 20 feet or 6 meters.
- Descriptions and sizes of marsh areas and other natural obstacles.
- Unusual grade and alignment problems encountered.
- Anticipated effects of landslides, melting snow, and rainfall.
- Soil conditions and stream and substrata conditions at proposed bridge sites.
- Discrepancies noted in maps or aerial photographs.
- Availability of local materials, equipment, transportation facilities, and labor.
- Photographs or sketches of reference points, control points, structure sites, ter-
rain obstacles, and any unusual conditions.

USE OF MAPS

The procurement of maps is a very important phase of the reconnaissance. The surveyor should locate and use all existing maps, including up-to-date aerial photographs of the area to be reconnoitered. Large scale topographic maps are desirable because they depict the terrain in the greatest detail. The maps, with overlays, serve as worksheets for plotting trial alignments and approximate grades and distances.

The surveyor begins a map study by marking the limiting boundaries and specified terminals directly on the map. Between boundaries and specified terminals, the surveyor observes the existing routes, ridge lines, water courses, mountain gaps, and similar control features. The surveyor must also look for terrain which will allow moderate grades, simplicity of alignment, and a balance between cut and fill.

After closer inspection, the routes that appear to fit the situation are classified. As further study shows disadvantages of each route, the surveyor lowers the classification. The routes to be further reconnoitered in the field are marked using pencils of different colors to denote priority or preference. Taking advantage of the existing terrain conditions to keep excavation to a minimum, the surveyor determines grades, estimates the amount of clearing to be done on each route, and marks stream crossings and marsh areas for possible fords, bridges, or culvert crossings.

Section II. PRELIMINARY SURVEY PREPARATION AND SCOPE

The preliminary survey is a detailed study of a route tentatively selected on the basis of reconnaissance survey information and recommendations. It runs a traverse along a pro-
posed route, establishes levels, records topography, and plots results. It also determines the final location from this plot or preliminary map. The size and scope of the project will
determine the nature and depth of the preliminary survey for most military construction.

PERSONNEL

The survey effort establishes a traverse with control and reference points, or it may expand to include leveling and topographic detail. Normally, obtaining the traverse, leveling, and topographic data are separate survey efforts, but this does not preclude combining them to make the most efficient use of personnel and equipment.

Traverse Party

The traverse party establishes the traverse line along the proposed route by setting and referencing control points, measuring distances, numbering stations, and establishing points of intersection. The party also makes the necessary ties to an existing control, if available or required. When no control is available, the party may assign a starting value for control purposes which can later be tied to a control point established by geodetic surveyors.

Level Party

The level party establishes benchmarks and determines the elevation of selected points along the route to provide control for future surveys, such as the preparation of a topographic map or profile and cross-section leveling. The level party takes rod readings and records elevations to the nearest 0.01 foot
or 0.001 meter. It sets the benchmarks in a place well out of the area of construction and marks them in such a way that they will remain in place throughout the whole project.

If there is no established vertical control point available, establish an arbitrary elevation that may be tied to a vertical control point later. An assigned value for an arbitrary elevation must be large enough to avoid negative elevations at any point on the project.

Topographic Party

The topographic party secures enough relief and planimetric detail within the prescribed area to locate any obstacles and allow preparation of rough profiles and cross sections. Computations made from the data determine the final location. The instruments and personnel combinations used vary with survey purpose, terrain, and available time. A transit-stadia party, plane table party, or combination of both may be used.

Transit-Stadia Party. The transitstadia party is effective in open country where comparatively long, clear sights can be obtained without excessive brush cutting.

Plane Table Party. The plane table party is used where terrain is irregular. For short route surveys, the procedure is much the same as in the transit-stadia method, except that the fieldwork and the drawing of the map are carried on simultaneously.

Section III. FINAL LOCATION SURVEY

PREPARATION AND SCOPE

Prior to the final location survey, office studies consisting of the preparation of a map from preliminary survey data, projection of a tentative alignment and profile, and preliminary estimates of quantities and costs are made and used as guidance for the final location phase. The instrument party carefully establishes the final location in the field using the paper location prepared from the preliminary survey. The surveyor should not
make any changes without the authority of the officer-in-charge.

RUNNING THE CENTERLINE

The centerline may vary from the paper location due to objects or conditions that were not previously considered. The final centerline determines all the construction lines. The surveyor marks the stations, runs the levels, and sets the grades.

The centerline starts at station $0+00$. The surveyor numbers the stations consecutively and sets them at the full 100 -foot or 30 -meter stations. The surveyor also sets stakes at important points along the centerline. These may be culvert locations, road intersections, beginnings and ends of curves, or breaks in the grade. When measurements are made in feet, these stations are numbered from the last full station $(+00)$. They are called plus stations. A station numbered $4+44.75$ would be 44.75 feet away from station $4+00$ and 444.75 feet from the beginning of the project.

When using the metric system, the total distance from the beginning of the project would be 135.56 meters and would be numbered 135.56.

REFERENCE STAKES

Referencing of stations is described in TM 5-232.The control points established by the location survey determine the construction layout. Therefore, these points must be carefully referenced. The surveyor should set the control point references far enough from the construction to avoid disturbance.

PROFILE AND CROSS SECTIONS

After the centerline of the road, including the horizontal curves, has been staked, the next
step in the road layout is the determination of elevations along the centerline and laterally across the road. The surveyor performs these operations, known as profile leveling and cross-section leveling, as separate operations but at the same time as the elevation of points along a centerline or other fixed lines.

The interval usually coincides with the station interval, but shorter intervals may be necessary due to abrupt changes in terrain. The plotting of centerline elevations is known as a profile. From this profile, the design engineer determines the grade of the road.

The cross-section elevations make it possible to plot views of the road across the road at right angles. These plotted cross sections determine the volume of earthwork to be moved. The surveyor establishes the crosssection lines at regular stations, at any plus station, and at intermediate breaks in the ground and lays out the short crosslines by eye and long crosslines at a 90 -degree angle to the centerline with an instrument.

All elevations at abrupt changes or breaks in the ground are measured with a rod and level, and distances from the centerline are measured with a tape. In rough country, the surveyor uses the hand level to obtain cross sections if the centerline elevations have been determined using the engineer level.

Section IV. CONSTRUCTION LAYOUT SURVEY

PREPARATION AND SCOPE

The construction layout is an instrument survey. It provides the alignment, grades, and locations which guide the construction operations. The construction operations include clearing, grubbing, stripping, drainage, rough grading, finish grading, and surfacing. The command must keep the surveyors sufficiently ahead of the construction activity in both time and distance to guarantee uninterrupted progress of the construction effort. Note the following suggested distances.

- Keep centerline established 1,500 feet or 450 meters ahead of clearing and grubbing.
- Keep rough grade established and slope stakes set 1,000 feet or 300 meters ahead of stripping and rough grading.
- Set stakes to exact grade, 500 feet or 150 meters ahead of finish grading and surfacing.

ALIGNMENT

The surveyor must place the alignment markers ahead of the crews engaged in the various phases of construction. The surveyor may do a hasty alignment, marked by flags and rods, suitable for guiding the clearing and grubbing operations. However, a deliberate location of the centerline is necessary for the final grading and surfacing operations.
The surveyor marks the curves and minor structures concurrently with the layout of the centerline. Major structures such as tunnels and bridges involve a site survey. The general demarcation of the site boundaries is carried on with the establishment of the route alignment. The layout of the site proper is a separate survey.

SETTING GRADE STAKES

Grade stakes indicate the exact grade elevation to the construction force. The surveyor consults the construction plans to determine the exact elevation of the subgrade and the distance from the centerline to the edges of the shoulder.

Preliminary Subgrade Stakes

The surveyor sets preliminary subgrade stakes on the centerline and other grade lines, as required. First, the surveyor determines the amount of cut or fill required at the centerline station. The amount of cut or fill is equal to the grade rod minus the ground rod. The grade rod is equal to the height of instrument minus the subgrade elevation at the station. The ground rod is the foresight reading at the station. If the result of this computation is a positive value, it indicates the amount of cut required. If it is negative, it indicates the amount of fill.

For example, given a height of instrument (HI) of 115.5 feet, a subgrade elevation of 108.6 feet, and a ground rod reading of 3.1 feet, the grade rod $=115.5$ feet $-108.6=+6.9$ and cut or fill $=6.9-3.1=+3.8$, indicating a cut of 3.8 feet. The surveyor records the result in the field notes and on the back of the grade stake as C^{8} (figure 2-1, example a).

Sometimes, it is necessary to mark stakes to the nearest whole or half foot to assist the earthmoving crew. In the example given, the surveyor would measure up 0.2 foot on the stake and mark it as in figure 2-1, example b. If at this stake a fill of 3.8 feet was required, the surveyor would measure up 0.3 foot and mark the stake as in figure 2-1, example d. Figure 2-1, example d, shows a case where the actual subgrade alignment could be marked on the stake. The number under the cut or fill represents the distance the stake is from the road centerline. The surveyor normally makes rod readings and computations to the nearest 0.1 foot or 0.01 meter.

During rough grading operations, the construction crew determines the grades for the edges of the traveled way, roadbed, and ditch lines. However, if the road is to be superelevated or is in rough terrain, the survey crew must provide stakes for all grade lines. These would include the centerline, the edge of the traveled way, the edges of the roadbed, and possibly, the centerline of the ditches. The surveyor sets those stakes by measuring the appropriate distance off the centerline and determines the amount of cut or fill as outlined. The surveyor offsets the stakes along the traveled way, roadbed, and ditches to avoid their being destroyed during grading operations. The construction foreman, not the surveyor, makes the decision as to how many and where grade stakes are required.

Final Grade Stakes

Once the rough grading is completed, the surveyor sets the final grade stakes (blue tops). The elevation of the final grade is determined and the value of the grade rod reading is computed. The surveyor uses a rod target to set the grade rod reading on the rod. The rod is held on the top of the stake. The stake is driven into the ground until the horizontal crosshair bisects the target and the top of the stake is at final grade. The surveyor marks the top of the stake with a blue lumber crayon to distinguish it from other stakes.

The surveyor should provide blue tops on all grade lines. However, the final decision as to what stakes are required lies with the construction foreman. To set final grade, the surveyor normally makes rod readings and computations to 0.01 foot or 0.001 meter.

Special Cases

Where grade stakes cannot be driven, as in hard coral or rock areas, the surveyor must use ingenuity to set and preserve grade markings under existing conditions. Often, such markings are made on the rock itself with a chisel or a lumber crayon.

SETTING SLOPE STAKES

Slope stakes indicate the intersection of cut or fill slopes with the natural groundline. They indicate the earthwork limits on each side of the centerline.

Level Section

When the ground is level transversely to the centerline of the road, the cut or fill at the
slope stake will be the same as at the center, except for the addition of the crown. On fill sections, the distance from the center stake to the slope stake is determined by multiplying the center cut by the ratio of the slope (for example, horizontal distance to vertical distance) of the side slopes and adding one half the width of the roadbed. On cut sections, the surveyor can find the distance from the center stake to the slope stake by multiplying the ratio of slope by the center cut and adding the distance from the centerline to the outside edge of the ditch.

In either case, if the ground is level, the slope stake on the right side of the road will be the same distance from the centerline as the one on the left side of the road. On superelevated sections, the surveyor must add the widening factor to determine the distance from the centerline to the slope stake. This is because the widening factor is not the same for both sides of the road, and the slope stakes will not be the same distance from the centerline.

Transversely Sloping Ground

When the ground is not level transversely, the cut or fill will be different for various points depending upon their distance from the centerline. The surveyor must determine the point, on each side of the centerline, whose distance from the center is equal to the cut or fill at that point multiplied by the slope ratio and added to one half the roadbed width for fills, and the slope ratio multiplied by the distance from the centerline to the outside of the ditches for cuts.

A trial and error method must be used. The surveyor will soon attain proficiency in approximating the correct position of the slope stake, and the number of trials can generally be reduced to two or three. The surveyor will mark the cut or fill on the slope stake and record it in the notebook as the numerator of a fraction whose denominator is the distance out from the centerline. Threelevel, five-level, and irregular sections present this problem. Figures 2-2 through 2-5 illustrate the procedure involved in setting slope stakes on sloping ground for three typical cases.

Cut Section

The cut section in figure 2-2 has the level set up with an HI of 388.3 feet. The subgrade elevation at this centerline station is set at 372.5 feet for a 23 -foot roadbed with $1.5: 1$ side slopes, 4 -foot shoulders, and 7 -foot ditches. The "grade rod" is the difference between these two elevations or $388.3-372.5=+15.8$ feet. The rodman now holds the rod on the ground at the foot of the center grade stake and obtains a reading of 6.3 feet, a "ground rod." The recorder subtracts 6.3 from the grade rod of 15.8 , which gives +9.5 feet or a center cut of 9.5 feet. On slope stakes, the cut or fill and the distance out from the centerline are written facing the center of the road. The backs of the slope stakes show the station and the slope ratio to be used.

The recorder estimates the trial distance by multiplying the cut at the centerline (9.5) by the slope ratio (1.5) and adding the distance from the centerline to the outside edge of the ditch (22.5).
$9.5 \times 1.5+22.5=36.8$ (to the nearest tenth of a foot)

Figure 2-2. Setting slope stakes

The rodman now moves to the right at right angles to the centerline the trial distance (36.8 feet). The rod is held at A and a reading of 9.1 is obtained, which, when subtracted from the grade rod of 15.8 , gives a cut of 6.7 feet. The recorder then computes what the distance from the centerline to A should be. This is done by multiplying the cut of 6.7 by the slope ratio and adding one half the roadbed width, which gives 32.6 feet.

However, the distance to A was measured as 36.8 feet instead of 32.6 , so the position at A is too far from the centerline. Another trial is

Fill Section

Figure 2-3. Marking slope stakes

(HI Above Grade Elevation)

Figure 2-4 illustrates a fill with the HI of the level set up above the subgrade elevation of the 31 -foot roadbed. In this case, the grade rod will always be less, numerically, than rod readings on the ground. The grade rod in this
problem is +2.8 ; the rod reading at the center stake is 6.5 ; and the difference is $2.8-6.5=-3.7$ feet. The minus sign indicates a center fill. The rodman finds the positions of the slope stakes by trial, as previously explained.

Figure 2-4. Slope stakes (HI above grade elevation)

Fill Section

(HI Below Grade Elevation)

Figure 2-5 illustrates a fill with the HI of the level below the grade elevation of the future roadbed. Therefore, the grade rod has a negative value. Adding the negative ground rod to
the negative grade rod will give a greater negative value for the fill. For example, at the center stake, the fill equals (-2.40 meters) + (-2.35 meters) or -4.75 meters. Otherwise, this case is similar to the preceding ones.

Figure 2-5. Slope stakes (HI below grade elevation)

CULVERT LOCATION

To establish the layout of a site such as a culvert, the surveyor locates the intersection of the roadway centerline and a line defining the direction of the culvert. Generally, culverts are designed to conform with natural drainage lines. The surveyor places stakes to mark the inlet and outlet points, and any cut or fill, if needed, is marked on them. The construction plans for the site are carefully followed, and the alignment and grade stakes are set on the centerlines beyond the work area. Thus, any line stake which is disturbed or destroyed during the work can be replaced easily.

The surveyor should also set a benchmark near the site, but outside of the work area, to
reestablish grades. Figure 2-6 shows atypical layout for a culvert site. Circumstances or practical considerations may dictate that certain types of surveys will be eliminated or combined. For example, the location and construction surveys may be run simultaneously. (Refer to TM 5-330.)

DRAINAGE

The construction of drainage facilities is an important part of any project. The surveyor must anticipate drainage problems and gather enough field data to indicate the best design and location for needed drainage structures. (Refer to TM 5-330.)

Figure 2-6. Layout of a culvert

The problem of adequate drainage is important to the location, design, and construction of almost any type of military installation. Proper drainage is of primary importance with respect to the operational requirements and the desired useful life of an installation. Inadequate drainage causes most road and airfield failures. The surveyor must see that these and similar facilities are well drained to function efficiently during inclement weather. Temporary drainage
during construction operations cannot be ignored since it is vital to prevent construction delays due to standing water or saturated working areas.

Proper drainage is an essential part of road construction. Poor drainage results in mud, washouts, and heaves, all of which are expensive in terms of delays and repairs to both roads and vehicles.

CURVES

Section I. SIMPLE HORIZONTAL CURVES

CURVE POINTS

By studying TM 5-232, the surveyor learns to locate points using angles and distances. In construction surveying, the surveyor must often establish the line of a curve for road layout or some other construction.

The surveyor can establish curves of short radius, usually less than one tape length, by holding one end of the tape at the center of the circle and swinging the tape in an arc, marking as many points as desired.

As the radius and length of curve increases, the tape becomes impractical, and the surveyor must use other methods. Measured angles and straight line distances are usually picked to locate selected points, known as stations, on the circumference of the arc.

SIMPLE CURVE

TYPES OF HORIZONTAL CURVES

A curve may be simple, compound, reverse, or spiral (figure 3-1). Compound and reverse curves are treated as a combination of two or more simple curves, whereas the spiral curve is based on a varying radius.

Simple

The simple curve is an arc of a circle. It is the most commonly used. The radius of the circle determines the "sharpness" or "flatness" of the curve. The larger the radius, the "flatter" the curve.

Compound

Surveyors often have to use a compound curve because of the terrain. This curve normally consists of two simple curves curving in the same direction and joined together.

COMPOUND CURVE

Figure 3-1. Horizontal curves

Reverse

A reverse curve consists of two simple curves joined together but curving in opposite directions. For safety reasons, the surveyor should not use this curve unless absolutely necessary.

REVERSE CURVE

Spiral

The spiral is a curve with varying radius used on railroads and somemodern highways. It provides a transition from the tangent to a simple curve or between simple curves in a compound curve.

Figure 3-1. Horizontal curves (continued)

STATIONING

On route surveys, the surveyor numbers the stations forward from the beginning of the project. For example, $0+00$ indicates the beginning of the project. The $15+52.96$ would indicate a point 1,552,96 feet from the beginning. A full station is 100 feet or 30 meters, making $15+00$ and $16+00$ full stations. A plus station indicates a point between full stations. ($15+52.96$ is a plus station.) When using the metric system, the surveyor does not use the plus system of numbering stations. The station number simply becomes the distance from the beginning of the project.

ELEMENTS OF A SIMPLE CURVE

Figure 3-2 shows the elements of a simple curve. They are described as follows, and their abbreviations are given in parentheses.

Point of Intersection (PI)

The point of intersection marks the point where the back and forward tangents
intersect. The surveyor indicates it one of the stations on the preliminary traverse.

Intersecting Angle (I)

The intersecting angle is the deflection angle at the PI. The surveyor either computes its value from the preliminary traverse station angles or measures it in the field.

Radius (\mathbf{R})

The radius is the radius of the circle of which the curve is an arc.

Point of Curvature (PC)

The point of curvature is the point where the circular curve begins. The back tangent is tangent to the curve at this point.

Point of Tangency (PT)
The point of tangency is the end of the curve. The forward tangent is tangent to the curve at this point.

Length of Curve (L)

The length of curve is the distance from the PC to the PT measured along the curve.

Tangent Distance (T)
The tangent distance is the distance along the tangents from the PI to the PC or PT. These distances are equal on a simple curve.

Central Angle (Δ)

The central angle is the angle formed by two radii drawn from the center of the circle (0) to the PC and PT. The central angle is equal in value to the I angle.

Long Chord (LC)

The long chord is the chord from the PC to the PT.

External Distance (E)

The external distance is the distance from the PI to the midpoint of the curve. The external distance bisects the interior angle at the PI.

Middle Ordinate (M)

The middle ordinate is the distance from the midpoint of the curve to the midpoint of the long chord. The extension of the middle ordinate bisects the central angle.

Figure 3-2. Elements of a simple curve

Degree of Curve (D)

The degree of curve defines the "sharpness" or "flatness" of the curve (figure 3-3). There are two definitions commonly in use for degree of curve, the arc definition and the chord definition.

Figure 3-3. Degree of curve
Arc definition. The arc definition states that the degree of curve (D) is the angle formed by two radii drawn from the center of the circle (point O , figure 3-3) to the ends of an arc 100 feet or 30.48 meters long. In this definition, the degree of curve and radius are inversely proportional using the following formula:

$$
\frac{\text { Degree of Curve }}{360^{\circ}}:: \frac{\text { Length of Arc }}{\text { Circumference }}
$$

Circumference $=2 \pi$ Radius

$$
\pi=3.141592654
$$

As the degree of curve increases, the radius decreases. It should be noted that for a given intersecting angle or central angle, when using the arc definition, all the elements of the curve are inversely proportioned to the degree of curve. This definition is primarily used by civilian engineers in highway construction.

English system. Substituting $\mathrm{D}=1^{\circ}$ and length of arc $=100$ feet, we obtain-
$\frac{1^{\circ}}{360^{\circ}}:: \frac{100}{2 \pi \mathrm{R}}=\frac{1}{360}:: \frac{100}{6.283185308 \mathrm{R}}$

$$
\text { Therefore, } \quad \begin{aligned}
& \mathrm{R}=36,000 \text { divided by } \\
& 6.283185308 \\
& \mathrm{R}=5,729.58 \mathrm{ft}
\end{aligned}
$$

Metric system. In the metric system, using a 30.48 -meter length of arc and substituting $\mathrm{D}=$ 1°, we obtain-

$$
\frac{1^{\circ}}{360^{\circ}}:=\frac{30.48}{2 \pi \mathrm{R}}=\frac{1}{360}:=\frac{30.48}{6.283185308 \mathrm{R}}
$$

Therefore, $\quad R=10,972.8$ divided by
6.283185308

$$
\mathrm{R}=1,746.38 \mathrm{~m}
$$

Chord definition. The chord definition states that the degree of curve is the angle formed by two radii drawn from the center of the circle (point 0 , figure 3-3) to the ends of a chord 100 feet or 30.48 meters long. The radius is computed by the following formula:

$$
R=\frac{50 \mathrm{ft}}{\operatorname{Sin}^{1 / 2} \mathrm{D}} \text { or } \frac{15.24 \mathrm{~m}}{\operatorname{Sin}^{1 / 2} \mathrm{D}}
$$

The radius and the degree of curve are not inversely proportional even though, as in the arc definition, the larger the degree of curve the "sharper" the curve and the shorter the radius. The chord definition is used primarily on railroads in civilian practice and for both roads and railroads by the military.

English system. Substituting D $=1^{0}$ and given $\operatorname{Sin} 1 / 21=0.0087265355$.
$R=\frac{50 \mathrm{ft}}{\operatorname{Sin} 1 / 2 \mathrm{D}}$ or $\frac{50}{0.0087265355}$
$\mathrm{R}=5,729.65 \mathrm{ft}$
Metric system. Using a chord 30.48 meters long, the surveyor computes R by the formula

$$
\mathrm{R}=\frac{15.24 \mathrm{~m}}{0.0087265355}
$$

	Degree of Curve		Radius Feet	Radius Meters	Chord Feet	Lengths Meters
	from	1-3	5,730-1,910	1,745-585	100	30
		3. 8	1,910-720	585-220	50	15
		8-16	$720-360$	220-110	25	7.5
-	over	16	360-150	110-45	10	3

The chord lengths above are the maximum distances in which the discrepancy between the arc length and chord length will fall within the allowable error for taping, which is 0.02 foot per 100 feet on most construction surveys. Depending upon the terrain and the needs of the project foremen, the surveyor may stake out the curve with shorter or longer chords than recommended.

Deflection Angles

The deflection angles are the angles between a tangent and the ends of the chords from the PC. The surveyor uses them to locate the direction in which the chords are to be laid out. The total of the deflection angles is always equal to one half of the I angle. This total serves as a check on the computed deflection angles.

SIMPLE CURVE FORMULAS

The following formulas are used in the computation of a simple curve. All of the formulas, except those noted, apply to both the arc and chord definitions.
$\mathrm{R}=\frac{5729.58 \mathrm{ft}}{\mathrm{D}}$ or $\frac{1746.38 \mathrm{~m}}{\mathrm{D}}$ (arc definition)
$\mathrm{D}=\frac{5729.58 \mathrm{ft}}{\mathrm{R}}$ or $\frac{1746.38 \mathrm{~m}}{\mathrm{R}}$ (arc definition)
$R=\frac{50 \mathrm{ft}}{\operatorname{Sin}^{1 / 2} \mathrm{D}}$ or $\frac{15.24 \mathrm{~m}}{\operatorname{Sin}^{1 / 2} \mathrm{D}}$ (chord definition)
$\operatorname{Sin} 1 / 2 D=\frac{50 \mathrm{ft}_{\mathrm{R}} \text { or } \operatorname{Sin} 1 / 2 D=}{}$
$\frac{15.24 \mathrm{~m}}{\mathrm{~m}}$ (chord definition)
$\mathbf{T}=\mathbf{R}\left(\operatorname{Tan}^{1 / 2} \mathrm{I}\right)$
$\mathrm{L}=\left(\frac{\mathrm{I}}{\mathrm{D}}\right) 100 \mathrm{ft}$ or $\mathrm{L}=\left(\frac{\mathrm{I}}{\mathrm{D}}\right) 30.48 \mathrm{~m}$

L is the distance around the arc for the arc definition, or the distance along the chords for the chord definition.

$$
\begin{aligned}
& \mathrm{PC}=\mathrm{PI}-\mathrm{T} \\
& \mathrm{PT}=\mathrm{PC}+\mathrm{L} \\
& \mathrm{E}=\mathrm{R}\left(\frac{1}{\operatorname{Cos} 1 / 2 \mathrm{I}}-1\right) \text { or } \mathrm{E}=\mathrm{T}(\operatorname{Tan} 1 / 4 \mathrm{I})
\end{aligned}
$$

$\mathrm{M}=\mathrm{R}\left(1-\mathrm{COs}^{1 / 2} \mathrm{I}\right)$
$\mathrm{LC}=2 \mathrm{R}\left(\operatorname{Sin}^{1} / 2 \mathrm{I}\right)$
In the following formulas, C equals the chord length and d equals the deflection angle. All the formulas are exact for the arc definition and approximate for the chord definition.
$\mathrm{d}=\left(\frac{\mathrm{D}}{2}\right)\left(\frac{\mathrm{C}}{100 \mathrm{ft}}\right)$ or $\mathrm{d}=\left(\frac{\mathrm{D}}{2}\right)\left(\frac{\mathrm{C}}{30.48 \mathrm{~m}}\right)$
This formula gives an answer in degrees.
d $=0.3(\mathrm{C})(\mathrm{D})$ in the English system or
$\frac{(0.3 \times \mathrm{D})(\mathrm{C})}{, 3048}$
in the metric system. The answer will be in minutes.

SOLUTION OF A SIMPLE CURVE

To solve a simple curve, the surveyor must know three elements. The first two are the PI station value and the I angle. The third is the degree of curve, which is given in the project specifications or computed using one of the elements limited by the terrain (see section III). The surveyor normally determines the PI and I angle on the preliminary traverse for the road. This may also be done by triangulation when the PI is inaccessible.

Chord Definition

The six-place natural trigonometric functions from table A-1 were used in the example. When a calculator is used to obtain the trigonometric functions, the results may vary slightly. Assume that the following is known: $P I=18+00, I=45$, and $D=15^{\circ}$.

Chord Definition (Feet)

$$
\begin{aligned}
& \mathrm{R}=\frac{50 \mathrm{ft}}{\operatorname{Sin} 1 / 2 \mathrm{D}}=\frac{50}{0.130526}=383.07 \mathrm{ft} \\
& \mathrm{~T}=\mathrm{R}(\operatorname{Tan} 1 / 2 \mathrm{I})=383.07 \times 0.414214=158.67 \mathrm{ft} \\
& \mathrm{~L}=\left(\frac{\mathrm{I}}{\mathrm{D}}\right) 100 \mathrm{ft}=\frac{45}{15} \times 100=300.00 \mathrm{ft} \\
& \mathrm{PC}=\mathrm{PI}-\mathrm{T}=1,800-158.67= \\
& 1,641.33 \text { or station } 16+41.33
\end{aligned}
$$

$$
\mathrm{PT}=\mathrm{PC}+\mathrm{L}=1,641.33+300=
$$

$$
1,941.33 \text { or station } 19+41.33
$$

$$
\begin{aligned}
& \mathrm{E}=\mathrm{R}\left(\frac{1}{\operatorname{Cos} 1 / 2 \mathrm{I}} \cdot 1\right)=383.07\left(\frac{1}{0.923880} \cdot 1\right) \\
&=31.56 \mathrm{ft} \\
& \mathrm{M}=\mathrm{R}\left(1-\operatorname{Cos}^{1 / 2} \mathrm{I}\right)=383.07(1-0.923880)= \\
& 29.16 \mathrm{ft}
\end{aligned}
$$

$$
\mathrm{LC}=2 \mathrm{R}(\operatorname{Sin} 1 / 2 \mathrm{I})=2 \times 383.07(0.382683)=
$$

$$
293.19 \mathrm{ft}
$$

Chords. Since the degree of curve is 15 degrees, the chord length is 25 feet. The surveyor customarily places the first stake after the PC at a plus station divisible by the chord length. The surveyor stakes the centerline of the road at intervals of $10,25,50$ or 100 feet between curves. Thus, the level party is not confused when profile levels are run on the centerline. The first stake after the PC for this curve will be at station $16+50$. Therefore, the first chord length or subchord is 8.67 feet. Similarly, there will be a subchord at the end of the curve from station $19+25$ to the PT. This subchord will be 16,33 feet. The surveyor designates the subchord at the beginning, C_{1}, and at the end, C_{2} (figure 3-2).

Deflection Angles. After the subchords have been determined, the surveyor computes the deflection angles using the formulas on page 3-6. Technically, the formulas for the
arc definitions are not exact for the chord definition. However, when a one-minute instrument is used to stake the curve, the surveyor may use them for either definition. The deflection angles are-

$$
\begin{aligned}
& \mathrm{d}=0.3^{\prime} \quad \text { C D } \\
& \mathrm{d}_{\text {sdd }}=0.3 \times 25 \times 15^{\circ}=112.5^{\prime} \text { or } 1^{\circ} 52.5^{\prime} \\
& \mathrm{d}_{1}=0.3 \times 8.67 \times 15^{\circ}=0^{\circ} 39.015^{\prime} \\
& \mathrm{d}_{2}=0.3 \times 16.33 \times 15^{\circ}=73.485^{\prime} \text { or } 1^{\circ} 13.485^{\prime}
\end{aligned}
$$

The number of full chords is computed by subtracting the first plus station divisible by the chord length from the last plus station divisible by the chord length and dividing the difference by the standard (std) chord length. Thus, we have $(19+25-16+50)-25$ equals 11 full chords. Since there are 11 chords of 25 feet, the sum of the deflection angles for 25foot chords is $11 \times 1^{\circ} 52.5^{\prime}=20^{\circ} 37.5^{\prime}$.

The sum of $\mathrm{d}_{1}, \mathrm{~d}_{2}$, and the deflections for the full chords is-

$$
\begin{aligned}
& \mathrm{d}_{1}=0^{\circ} 39.015 \\
& \mathrm{~d}_{1} \\
& \mathrm{~d}_{2}=1^{\circ} 13.485 \\
& \mathrm{~d}_{\text {std }}=20^{\circ} 37.500^{\prime} \\
& \hline
\end{aligned}
$$

Total $22^{\circ} 30.000^{\prime}$
The surveyor should note that the total of the deflection angles is equal to one half of the I angle. If the total deflection does not equal one half of I, a mistake has been made in the calculations. After the total deflection has been decided, the surveyor determines the angles for each station on the curve. In this step, they are rounded off to the smallest reading of the instrument to be used in the field. For this problem, the surveyor must assume that a one-minute instrument is to be used. The curve station deflection angles are listed on page 3-8.

+50	$\mathrm{C}_{1} 8.67$	$\begin{aligned} & \mathrm{d}_{1} \quad 0^{\circ} 39.015^{\prime} \text { or } 0^{\circ} 39^{\prime} \\ & \mathrm{d}_{\text {std }}+1^{\circ} 52.500^{\prime} \end{aligned}$
+75	$\mathrm{C}_{\text {std }} 25$	$\begin{aligned} & 2^{\circ} 31.515^{\prime} \text { or } 2^{\circ} 32^{\prime} \\ + & 1^{\circ} 52.500^{\prime} \end{aligned}$
$17+00$	25	$\begin{aligned} & 4^{\circ} 24.015^{\prime} \text { or } 4^{\circ} 24^{\prime} \\ + & 1^{\circ} 52.500^{\prime} \end{aligned}$
+25	25	$\begin{aligned} & 6^{\circ} 16.515^{\prime} \text { or } 6^{\circ} 17^{\prime} \\ + & 1^{\circ} 52.500^{\prime} \end{aligned}$
+50	25	$\begin{aligned} & 8^{\circ} 9.015^{\prime} \text { or } 8^{\circ} 09^{\prime} \\ + & 1^{\circ} 52.500^{\prime} \end{aligned}$
+75	25	$\begin{aligned} & 10^{\circ} 1.515^{\prime} \text { or } 10^{\circ} 02^{\prime} \\ & +1^{\circ} 52.500^{\prime} \end{aligned}$
$18+00$	25	$\begin{aligned} & 11^{\circ} 54.015^{\prime} \text { or } 11^{\circ} 54^{\prime} \\ & +1^{\circ} 52.500^{\prime} \end{aligned}$
+25	25	$\begin{aligned} & 13^{\circ} 46.515^{\prime} \text { or } 13^{\circ} 47^{\prime} \\ & +1^{\circ} 52.500^{\prime} \end{aligned}$
+50	25	$\begin{aligned} & 15^{\circ} 39.015^{\prime} \text { or } 15^{\circ} 39^{\prime} \\ & +1^{\circ} 52.500^{\prime} \end{aligned}$
+75	25	$\begin{aligned} & 17^{\circ} 31.515^{\prime} \text { or } 17^{\circ} 32^{\prime} \\ & +1^{\circ} 52.500^{\prime} \end{aligned}$
$19+00$	25	$\begin{aligned} & 19^{\circ} 24.015^{\prime} \text { or } 19^{\circ} 24^{\prime} \\ & +1^{\circ} 52.500^{\prime} \end{aligned}$
+25	25	$\begin{aligned} & 21^{\circ} 26.515^{\prime} \text { or } 21^{\circ} 27^{\prime} \\ & \mathrm{d}_{2}+1^{\circ} 13.485^{\prime} \end{aligned}$
19+41.33	$\mathrm{C}_{2} 16.33$	$22^{\circ} 30.000^{\prime}$ or $22^{\circ} 30^{\prime}$

STATION CHORD LENGTH
PC 16+41.33

25

PT 19+41.33
$\mathrm{C}_{2} 16.33$
Special Cases. The curve that was just solved had an I angle and degree of curve whose values were whole degrees. When the I angle and degree of curve consist of degrees and minutes, the procedure in solving the curve does not change, but the surveyor must take care in substituting these values into the formulas for length and deflection angles. For example, if $\mathrm{I}=42^{\circ} 15^{\prime}$ and $\mathrm{D}=5^{\circ} 37^{\prime}$, the

DEFLECTION ANGLES

surveyor must change the minutes in each angle to a decimal part of a degree, or $\mathrm{D}=$ $42.25000^{\circ}, \mathrm{I}=5.61667^{\circ}$. To obtain the required accuracy, the surveyor should convert values to five decimal places.

An alternate method for computing the length is to convert the I angle and degree of curve to
minutes; thus, $42^{\circ} 15^{\prime}=2,535$ minutes and 5° $37^{\prime}=337$ minutes. Substituting into the length formula gives
$\mathrm{L}=\frac{2.535 \mathrm{x}}{337} \mathrm{x} 100=752.23$ feet.
This method gives an exact result. If the surveyor converts the minutes to a decimal part of a degree to the nearest five places, the same result is obtained.

Since the total of the deflection angles should be one half of the I angle, a problem arises when the I angle contains an odd number of minutes and the instrument used is a oneminute instrument. Since the surveyor normally stakes the PT prior to running the curve, the total deflection will be a check on the PT. Therefore, the surveyor should compute to the nearest 0.5 degree. If the total deflection checks to the nearest minute in the field, it can be considered correct.

Curve Tables

The surveyor can simplify the computation of simple curves by using tables. Table A-5 lists long chords, middle ordinates, externals, and tangents for a l-degree curve with a radius of 5,730 feet for various angles of intersection. Table A-6 lists the tangent, external distance corrections (chord definition) for various angles of intersection and degrees of curve.

Arc Definition. Since the degree of curve by arc definition is inversely proportional to the other functions of the curve, the values for a one-degree curve are divided by the degree of curve to obtain the element desired. For example, table A-5 lists the tangent distance and external distance for an I angle of 75 degrees to be $4,396.7$ feet and 1,492,5 feet, respectively. Dividing by 15 degrees, the degree of curve, the surveyor obtains a tangent distance of 293.11 feet and an external distance of 99.50 feet.

Chord Definition. To convert these values to the chorddefinition, the surveyor uses the values in table A-5. From table A-6, a
correction of 0.83 feet is obtained for the tangent distance and for the external distance, 0.29 feet.

The surveyor adds the corrections to the tangent distance and external distance obtained from table A-5 This gives a tangent distance of 293.94 feet and an external distance of 99.79 feet for the chord definition.

After the tangent and external distances are extracted from the tables, the surveyor computes the remainder of the curve.

COMPARISON OF ARC AND CHORD DEFINITIONS

Misunderstandings occur between surveyors in the field concerning the arc and chord definitions. It must be remembered that one definition is no better than the other.

Different Elements

Two different circles are involved in comparing two curves with the same degree of curve. The difference is that one is computed by the arc definition and the other by the chord definition. Since the two curves have different radii, the other elements are also different.

5,730-Foot Definition

Some engineers prefer to use a value of 5,730 feet for the radius of a l-degree curve, and the arc definition formulas. When compared with the pure arc method using 5,729.58, the 5,730 method produces discrepancies of less than one part in 10,000 parts. This is much better than the accuracy of the measurements made in the field and is acceptable in all but the most extreme cases. Table A-5 is based on this definition.

CURVE LAYOUT

The following is the procedure to lay out a curve using a one-minute instrument with a horizontal circle that reads to the right. The values are the same as those used to demonstrate the solution of a simple curve (pages 3-6 through 3-8).

Setting PC and PT

With the instrument at the PI, the instrumentman sights on the preceding PI and keeps the head tapeman on line while the tangent distance is measured. A stake is set on line and marked to show the PC and its station value.

The instrumentman now points the instrument on the forward PI, and the tangent distance is measured to set and mark a stake for the PT.

Laying Out Curve from PC

The procedure for laying out a curve from the PC is described as follows. Note that the procedure varies depending on whether the road curves to the left or to the right.

Road Curves to Right. The instrument is set up at the PC with the horizontal circle at $0^{\circ} 00^{\prime}$ on the PI.
(1) The angle to the PT is measured if the PT can be seen. This angle will equal one half of the I angle if the PC and PT are located properly.
(2)Without touching the lower motion, the first deflection angle, $\mathrm{d}_{\mathrm{d}}\left(0^{\circ} 39^{\prime}\right)$, is set on the horizontal circle. The instrumentman keeps the head tapeman on line while the first subchord distance, $\mathrm{C}_{1}(8.67$ feet $)$, is measured from the PC to set and mark station $16+50$.
(3) The instrumentman now sets the second deflection angle, $\mathrm{d}_{1}+\mathrm{d}_{\mathrm{sd}}\left(2^{\circ} 32^{\prime}\right)$, on the horizontal circle. The tapemen measure the standard chord (25 feet) from the previously set station $(16+50)$ while the instrument man keeps the head tapeman on line to set station $16+75$.
(4) The succeeding stations are staked out in the same manner. If the work is done correctly, the last deflection angle will point on the PT, and the last distance will be the subchord length, $\mathrm{C}_{2}(16.33$ feet $)$, to the PT.

Road Curves to Left. As in the procedures noted, the instrument occupies the PC and is set at $0^{\circ} 00^{\prime}$ pointing on the PI .
(1) The angle is measured to the PT, if possible, and subtracted from 360 degrees. The result will equal one half the I angle if the PC and PT are positioned properly.
(2) The first deflection, $\mathrm{d}_{1}\left(0^{\circ} 39^{\prime}\right)$, is subtracted from 360 degrees, and the remainder is set on the horizontal circle. The first subchord, $\mathrm{C}_{1}(8.67$ feet $)$, is measured from the PC, and a stake is set on line and marked for station $16+50$.
(3)The remaining stations are set by continuing to subtract their deflection angles from 360 degrees and setting the results on the horizontal circles. The chord distances are measured from the previously set station.
(4)The last station set before the PT should be $\mathrm{C}_{2}(16.33$ feet from the PT), and its deflection should equal the angle measured in (1) above plus the last deflection, $\mathrm{d}_{2}\left(1^{\circ} 14^{\prime}\right)$.

Laying Out Curve from Intermediate Setup

When it is impossible to stake the entire curve from the PC, the surveyor must use an adaptation of the above procedure.
(1) Stake out as many stations from the PC as possible.
(2) Move the instrument forward to any station on the curve.
(3) Pick another station already in place, and set the deflection angle for that station on the horizontal circle. Sight that station with the instruments telescope in the reverse position.
(4)Plunge the telescope, and set the remaining stations as if the instrument was set over the PC.

Laying Out Curve from PT

If a setup on the curve has been made and it is still impossible to set all the remaining stations due to some obstruction, the surveyor can "back in" the remainder of the curve from the PT. Although this procedure has been set up as a method to avoid obstructions, it is widely used for laying out curves. When using the "backing in method," the surveyor sets approximately one half the curve stations from the PC and the remainder from the PT. With this method, any error in the curve is in its center where it is less noticeable.

Road Curves to Right. Occupy the PT, and sight the PI with one half of the I angle on the horizontal circle. The instrument is now oriented so that if the PC is sighted, the instrument will read $0^{\circ} 00^{\prime}$.

The remaining stations can be set by using their deflections and chord distances from the PC or in their reverse order from the PT.

Road Curves to Left. Occupy the PT and sight the PI with 360 degrees minus one half of the I angle on the horizontal circle. The instrument should read $0^{\circ} 00^{\prime}$ if the PC is sighted.

Set the remaining stations by using their deflections and chord distances as if computed from the PC or by computing the deflections in reverse order from the PT.

CHORD CORRECTIONS

Frequently, the surveyor must lay out curves more precisely than is possible by using the chord lengths previously described.

To eliminate the discrepancy between chord and arc lengths, the chords must be corrected using the values taken from the nomography in table A-11. This gives the corrections to be applied if the curve was computed by the arc definition.

Table A-10 gives the corrections to be applied if the curve was computed by the chord definition. The surveyor should recall that the length of a curve computed by the chord definition was the length along the chords. Figure 3-5 illustrates the example given in table A-9. The chord distance from station $18+00$ to station $19+00$ is 100 feet. The nominal length of the subchords is 50 feet.

INTERMEDIATE STAKE

If the surveyor desires to place a stake at station 18+50, a correction must be applied to the chords, since the distance from $18+00$ through $18+50$ to $19+00$ is greater than the chord from $18+00$ to $19+00$. Therefore, a correction must be applied to the subchords to keep station 19+00 100 feet from 18+00. In figure $3-5$, if the chord length is nominally 50 feet, then the correction is 0.19 feet. The chord distance from $18+00$ to $18+50$ and $18+50$ to $19+00$ would be 50.19 .

Figure 3-5. Subchord corrections

Section II. OBSTACLES TO CURVE LOCATION

TERRAIN RESTRICTIONS

To solve a simple curve, the surveyor must know three parts. Normally, these will be the PI, I angle, and degree of curve. Sometimes, however, the terrain features limit the size of various elements of the curve. If this happens, the surveyor must determine the degree of curve from the limiting factor.

Inaccessible PI

Under certain conditions, it may be impossible or impractical to occupy the PI. In this case, the surveyor locates the curve elements by using the following steps (figure
(1) Mark two intervisible points A and B, one on each of the tangents, so that line AB (a random line connecting the tangents) will clear the obstruction.
(2) Measure angles a and b by setting up at both A and B.
(3) Measure the distance AB.
(4) Compute inaccessible distances AV and BV as follows:

$$
\mathrm{I}=\mathrm{a}+\mathrm{b}
$$

Figure 3-6. Inaccessible PI
(5) Determine the tangent distance from the PI to the PC on the basis of the degree of curve or other given limiting factor.
(6)Locate the PC at a distance T minus AV from the point A and the PT at distance T minus BV from point B .
(7)Proceed with the curve computation and layout.

Inaccessible PC

When the PC is inaccessible, as illustrated in figure 3-7, and both the PI and PT are set and readily accessible, the surveyor must establish the location of an offset station at the PC.
(1)Place the instrument on the PT and back the curve in as far as possible.
(2) Select one of the stations (for example, "P") on the curve, so that a line PQ, parallel to the tangent line AV, will clear the obstacle at the PC.
${ }^{(3)}$ Compute and record the length of line PW so that point W is on the tangent line AV and line PW is perpendicular to the tangent. The length of line $\mathrm{PW}=\mathrm{R}(1-\mathrm{Cos}$ d_{p}), where $d p$ is that portion of the central angle subtended by AP and equal to two times the deflection angle of P .
(4) Establish point W on the tangent line by setting the instrument at the PI and laying off angle $\mathrm{V}\left(\mathrm{V}=180^{\circ}-\mathrm{I}\right)$. This sights the instrument along the tangent

Figure 3-7. Inaccessible PC

AV. Swing a tape using the computed length of line PW and the line of sight to set point W.
(5) Measure and record the length of line VW along the tangent.
(6)Place the instrument at point P. Backsight point W and lay off a 90 -degree angle to sight along line PQ, parallel to AV.
(7) Measure along this line of sight to a point Q beyond the obstacle. Set point Q , and record the distance PQ.
(8) Place the instrument at point Q , backsight P, and lay off a 90 -degree angle to sight along line QS. Measure, along this line of sight, a distance QS equals PW, and set point S. Note that the station number of point $\mathrm{S}=\mathrm{PI}-$ (line $\mathrm{VW}+$ line PQ). PI
(9) Set an offset PC at point Y by measuring from point Q toward point P a distance equal to the station of the PC minus station S. To set the PC after the obstacle has been removed, place the instrument at point Y , backsight point Q , lay off a 90 -degree angle and a distance from Y to the PC equal to line PW and QS. Carefully set reference points for points $\mathrm{Q}, \mathrm{S}, \mathrm{Y}$, and W to insure points are available to set the PC after clearing and construction have begun.

Inaccessible PT

When the PT is inaccessible, as illustrated in figure 3-8, and both the PI and PC are readily accessible, the surveyor must establish an accessib

Figure 3-8. Inaccessible PT
offset station at the PT using the method for inaccessible PC with the following exceptions.
(1)Letter the curve so that point A is at the PT instead of the PC (see figure 3-8).
(2)Lay the curve in as far as possible from the PC instead of the PT.
(3) Angle d_{p} is the angle at the center of the curve between point P and the PT, which is equal to two times the difference between the deflection at P and one half of I. Follow the steps for inaccessible PC to set lines PQ and QS. Note that the station at point S equals the computed station value of PT plus YQ.

Obstacle on Curve

Some curves have obstacles large enough to interfere with the line of sight and taping. Normally, only a few stations are affected. The surveyor should not waste too much time on preliminary work. Figure 3-9 illustrates a method of bypassing an obstacle on a curve.
(1) Set the instrument over the PC with the horizontal circle at $0^{\circ} 00^{\prime}$, and sight on the PI.
Check I/2 from the PI to the PT, if possible.
(2)Set as many stations on the curve as possible before the obstacle, point b.
(3)Set the instrument over the PT with the plates at the value of I/2. Sight on the PI.
(4)Use station S to number the stations of

Figure 3-9. Obstacle on a curve
(4)Back in as many stations as possible beyond the obstacle, point e.
(5) After the obstacle is removed, the obstructed stations c and d can be set.

CURVE THROUGH FIXED POINT

Because of topographic features or other obstacles, the surveyor may find it necessary to determine the radius of a curve which will pass through or avoid a fixed point and connect two given tangents. This may be accomplished as follows (figure 3-10):
(1)Given the PI and the I angle from the preliminary traverse, place the instrument on the PI and measure angle d, so that angle d is the angle between the fixed point and the tangent line that lies on the same side of the curve as the fixed point.
(2) Measure line y, the distance from the PI to the fixed point.
(3) Compute angles c, b, and a in triangle COP.

$$
\mathrm{c}=90-(\mathrm{d}+\mathrm{I} / 2)
$$

To find angle b, first solve for angle e
$\operatorname{Sin} \mathrm{e}=\frac{\operatorname{Sin} \mathrm{c}}{\operatorname{Cos} \mathrm{I} / 2}$
Angle $\mathrm{b}=180^{\circ}$ - angle e
$\mathrm{a}=180^{\circ}-(\mathrm{b}+\mathrm{c})$
(4)Compute the radius of the desired curve using the formula

$$
\mathrm{R}=\frac{\mathrm{y} \operatorname{Sin} \mathrm{c}}{\operatorname{Sin} \mathrm{a}}
$$

Figure 3-10. Curve through a fixed point
(5) Compute the degree of curve to five decimal places, using the following formulas:
(arc method) $\mathrm{D}=5,729.58 \mathrm{ft} / \mathrm{R}$
$\mathrm{D}=1,746.385$ meters $/ \mathrm{R}$
(chord method) $\operatorname{Sin} \mathrm{D}=2(50$ feet $/ \mathrm{R})$
Sin D $=2(15.24$ meters/R $)$
(6)Compute the remaining elements of the curve and the deflection angles, and stake the curve.

LIMITING FACTORS

In some cases, the surveyor may have to use elements other than the radius as the limiting factor in determining the size of the curve. These are usually the tangent T, external E, or middle ordinate M. When any limiting factor is given, it will usually be presented in the form of T equals some value $\mathrm{x}, \mathrm{T} \geqslant \mathrm{x}$ or $\mathrm{T} \leqslant$ x. In any case, the first step is to determine the radius using one of the following formulas:

> Given: Tangent; then $\mathrm{R}=\mathrm{T} /(\operatorname{Tan} 1 / 2 \mathrm{I})$
> External; then $\mathrm{R}=$ $\mathrm{E} /[(1 / \operatorname{Cos} 1 / 2 \mathrm{I})-1]$
> Middle Ordinate; then $\mathrm{R}=$ $\mathrm{M} /(1-\operatorname{Cos} 1 / 2 \mathrm{I})$

The surveyor next determines D. If the limiting factor is presented in the form T equals some value x, the surveyor must compute D , hold to five decimal places, and compute the remainder of the curve. If the limiting factor is presented as \geqslant, then D is rounded down to the nearest $1 / 2$ degree. For example, if $\mathrm{E} \geqslant 50$ feet, the surveyor would round down to the nearest $1 / 2$ degree, recompute E , and compute the rest of the curve data using the rounded value of D , The new value of E will be equal to or greater than 50 feet.

If the limiting factor is \leqslant the D is rounded is to the nearest $1 / 2$ degree. For example, if $\mathrm{M} \leqslant$ 45 feet, then D would be rounded up to the nearest $1 / 2$ degree, M would be recomputed, and the rest of the curve data computed using the rounded value of D. The new value of M will be equal to or less than 45 feet.

The surveyor may also use the values from table B-5 to compute the value of D. This is done by dividing the tabulated value of tangent, external, or middle ordinate for a l-degree curve by the given value of the limiting factor. For example, given a limiting tangent $\mathrm{T} \leqslant 45$ feet and $\amalg=20^{\circ} 20^{\prime}$, the T for a 1-degree curve from table B-5 is $1,027.6$ and D $=1,027 \cdot 6 / 45 \cdot 00=22.836^{\circ}$. Rounded up to the nearest half degree, $\mathrm{D}=23^{\circ}$. Use this rounded value to recompute D, T and the rest of the curve data.

Section III. COMPOUND AND REVERSE CURVES

COMPOUND CURVES

A compound curve is two or more simple curves which have different centers, bend in the same direction, lie on the same side of their common tangent, and connect to form a continuous arc. The point where the two curves connect (namely, the point at which the PT of the first curve equals the PC of the second curve) is referred to as the point of compound curvature (PCC).

Since their tangent lengths vary, compound curves fit the topography much better than simple curves. These curves easily adapt to mountainous terrain or areas cut by large, winding rivers. However, since compound curves are more hazardous than simple curves, they should never be used where a simple curve will do.

Compound Curve Data

The computation of compound curves presents two basic problems. The first is where the compound curve is to be laid out between two successive PIs on the preliminary traverse. The second is where the curve is to be laid in between two successive tangents on the preliminary traverse. (Seefigure 3-11)

Compound Curve between Successive PIs. The calculations and procedure for laying out a compound curve between successive PIs are outlined in the following steps. This procedure is illustrated in figure 3-11a.
(1) Determine the PI of the first curve at point A from field data or previous computations.
(2) Obtain I_{1}, I_{2}, and distance AB from the field data.
(3) Determine the value of D_{1}, the D for the first curve. This may be computed from a limiting factor based on a scaled value from the road plan or furnished by the project engineer.
(4) Compute R_{1} the radius of the first curve as shown on pages 3-6 through 3-8
(5) Compute T_{1}, the tangent of the first curve.

$$
\mathrm{T}_{1}=\mathrm{R}_{1}(\operatorname{Tan} 1 / 2 \mathrm{I})
$$

(6) Compute T_{2}, the tangent of the second curve.
$\mathrm{T}_{2}=\mathrm{AB}-\mathrm{T}_{1}$
(7) Compute R_{2}, the radius of the second curve.

$$
\mathrm{R}_{2}=\frac{\mathrm{T}_{2}}{\operatorname{Tan} 1 / 2 \mathrm{I}}
$$

(8) Compute D_{2} for the second curve. Since
the tangent for the second curve must be held exact, the value of D_{2} must be carried to five decimal places.
(9) Compare D_{1} and D_{2}. They should not differ by more than 3 degrees, If they vary by more than 3 degrees, the surveyor should consider changing the configuration of the curve.
(10) If the two Ds are acceptable, then compute the remaining data and deflection angles for the first curve.
(11) Compute the PI of the second curve. Since the PCC is at the same station as the PT of the first curve, then $\mathrm{PI}_{2}=\mathrm{PT}_{1}+\mathrm{T}_{2}$.
(12) Compute the remaining data and deflection angles for the second curve, and lay in the curves.

Compound Curve between Successive

 Tangents. The following steps explain the laying out of a compound curve between successive tangents This procedure is illustrated in figure 3-llb.(1) Determine the PI and I angle from the field data and/or previous computations.
(2) Determine the value of I_{1} and distance AB . The surveyor may do this by field measurements or by scaling the distance and angle from the plan and profile sheet.
(3) Compute angle C .

$$
\mathrm{C}=180-\mathrm{I}
$$

(4) Compute I_{2}.

$$
\mathrm{I}_{2}=180-\left(\mathrm{I}_{1}+\mathrm{C}\right)
$$

(5) Compute line AC.

$$
\mathrm{AC}=\frac{\mathrm{AB} \operatorname{Sin} \mathrm{I} 2}{\operatorname{Sin} \mathrm{C}}
$$

a. BETWEEN SUCCESSIVE PIs

b. between successive tangents

Figure 3-11. Compound curves
(6) Compute line BC . $\mathrm{BC}=\underline{\mathrm{AB} \operatorname{Sin} \mathrm{I}_{1}}$ Sin C
(7) Compute the station of PI_{1}. $\mathrm{PI}_{1}=\mathrm{PI}-\mathrm{AC}$
(8) Determine D_{1} and compute $\mathrm{R}_{\text {a }}$ and T , for the first curve as described on pages 3-6 through 3-8.
(9) Compute T_{2} and R_{2} as described on pages 3-6 through 3-8
(10) Compute D_{2} according to the formulas on pages 3-6 through 3-8.
(11) Compute the station at PC.

$$
\mathrm{PC}_{1}=\mathrm{PI}-\left(\mathrm{AC}+\mathrm{T}_{1}\right)
$$

(12) Compute the remaining curve data and deflection angles for the first curve.
(13) Compute PI_{2}.

$$
\mathrm{PI}_{2}=\mathrm{PT}_{1}+\mathrm{T}_{2}
$$

(14) Compute the remaining curve data and deflection angles for the second curve, and stake out the curves.

Staking Compound Curves

Care must be taken when staking a curve in the field. Two procedures for staking compound curves are described.

Compound Curve between Successive PIs. Stake the first curve as described on pages 3-10 and 3-11.
(1) Verify the PCC and PT_{2} by placing the instrument on the PCC, sighting on PI_{2}, and laying off $\mathrm{I}_{2} / 2$. The resulting line-ofsight should intercept PT_{2}.
(2) Stake the second curve in the same manner as the first.

Compound Curve between Successive Tangents. Place the instrument at the PI and sight along the back tangent.
(1) Lay out a distance AC from the PI along the back tangent, and set PI_{1}.
(2) Continue along the back tangent from PI_{2} a distance T_{1}, and set PC_{1}.
(3) Sight along the forward tangent with the instrument still at the PI.
(4) Lay out a distance BC from the PI along the forward tangent, and set PI_{2}.
(5) Continue along the forward tangent from PI a distance T_{2}, and set PT_{2}.
(6) Check the location of PI_{2} and PI_{2} by either measuring the distance between the two PIs and comparing the measured distance to the computed length of line AB , or by placing the instrument at PI_{1}, sighting the PI, and laying off I_{1}. The resulting line-of-sight should intercept PI_{2}.
(7) Stake the curves as outlined on pages 3-10 and 3-11.

REVERSE CURVES

A reverse curve is composed of two or more simple curves turning in opposite directions. Their points of intersection lie on opposite ends of a common tangent, and the PT of the first curve is coincident with the PC of the second. This point is called the point of reverse curvature (PRC).

Reverse curves are useful when laying out such things as pipelines, flumes, and levees. The surveyor may also use them on low-speed roads and railroads. They cannot be used on high-speed roads or railroads since they cannot be properly superelevated at the PRC. They are sometimes used on canals, but only with extreme caution, since they make the
canal difficult to navigate and contribute to erosion.

Reverse Curve Data

The computation of reverse curves presents three basic problems. The first is where the reverse curve is to be laid out between two successive PIs. (See figure 3-12.) In this case, the surveyor performs the computations in exactly the same manner as a compound curve between successive PIs. The second is where the curve is to be laid out so it connects two parallel tangents (figure 3-13). The third problem is where the reverse curve is to be aid out so that it connects diverging tangents figure 3-14.

Figure 3-12. Reverse curve between successive PIs

Connecting Parallel Tangents
Figure 3-13 illustrates a reverse curve connecting two parallel tangents. The PC and PT are located as follows.
(1)Measure p , the perpendicular distance between tangents.
(2) Locate the PRC and measure m_{1} and m_{r}. (If conditions permit, the PRC can be at the midpoint between the two tangents. This will reduce computation, since both arcs will be identical.)
(3) Determine R_{r}.
(4) Compute I_{1}.
$\operatorname{Cos} I_{1}=\frac{R_{1}-m_{1}}{R_{1}}$
(5) Compute L_{1} from
$L_{1}=R_{1} \operatorname{Sin} I_{1}$
$\mathrm{R}_{2}, \mathrm{I}_{2}$, and L_{2} are determined in the same way as $\mathrm{R}_{1}, \mathrm{I}_{1}$, and L_{1}. If the PRC is to be the midpoint, the values for arc 2 will be the same as for arc 1.
(6) Stake each of the arcs the same as a simple curve. If necessary, the surveyor can easily determine other curve components. For example, the surveyor needs a reverse curve to connect two parallel tangents. No obstructions exist so it can be made up of two equal arcs. The degree of curve for both must be 5°. The surveyor measures the distance p and finds it to be 225.00 feet.
$\mathrm{m}_{1}=\mathrm{m}_{2}$ and $\mathrm{L}_{1}=\mathrm{L}_{2}$
$\mathrm{R}_{1}=\mathrm{R}_{2}$ and $\mathrm{I}_{1}=\mathrm{I}_{2}$
$\xrightarrow{\text { FORWARD TANGENT }}$

Figure 3-13. Reverse curve connecting parallel tangents

$$
\begin{aligned}
& \mathrm{R}_{1}=\frac{50 \mathrm{ft}}{\operatorname{Sin} 1 / 2 \mathrm{D}}=\frac{50 \mathrm{ft}}{0.043619}=1,146.29 \mathrm{ft} \\
& \operatorname{Cos} \mathrm{I}_{1}=\frac{\mathrm{R}_{1}-\mathrm{m}_{1}}{\mathrm{R}_{1}}=\frac{1,033.79}{1,146.29}=0.901857 \\
& \mathrm{I}_{1}=25^{\circ} 36^{\prime} \\
& \mathrm{L}_{1}=\mathrm{R}_{1} \operatorname{Sin} \mathrm{I}_{1}=1,146.29 \times 0.432086=495.30 \\
& \mathrm{ft}
\end{aligned}
$$

(7) The PC and PT are located by measuring off L_{1} and L_{2}.

Connecting Diverging Tangents

The connection of two diverging tangents by a reverse curve is illustrated in figure 3-14. Due to possible obstruction or topographic consideration, one simple curve could not be used between the tangents. The PT has been moved back beyond the PI. However, the I angle still exists as in a simple curve. The controlling dimensions in this curve are the distance T_{s} to locate the PT and the values of
R_{1} and R_{2}, which are computed from the specified degree of curve for each arc.
(1) Measure I at the PI.
(2) Measure T_{s} to locate the PT as the point where the curve is to join the forward tangent. In some cases, the PT position will be specified, but T_{s} must still be measured for the computations.
(3) Perform the following calculations:

Determine R_{1} and R_{2}. If practical, have R_{1} equal R_{2}.

Angle $\mathrm{s}=180-(90+\mathrm{I})=90-\mathrm{I}$
$\mathrm{m}=\mathrm{T}_{\mathrm{s}}($ Tan I$)$
$\frac{\mathrm{L}=\mathrm{T}_{\text {. }}}{\operatorname{Cos} \mathrm{I}}$
angle $\mathrm{e}=\mathrm{I}_{1}$ (by similar triangles)

Figure 3-14. Reverse curve connecting diverging tangents
angle $\mathrm{f}=\mathrm{I}_{1}$ (by similar triangles)
therefore, $\mathrm{I}_{2}=\mathrm{I}+\mathrm{I}_{1}$
$\mathrm{n}=\left(\mathrm{R}_{2}-\mathrm{m}\right) \operatorname{Sin} \mathrm{e}$
$\mathrm{p}=\left(\mathrm{R}_{2}-\mathrm{m}\right) \operatorname{Cos} \mathrm{e}$
Determine g by establishing the value of I_{1}.
$\operatorname{Cos} I_{1}=\frac{R_{1}+p}{R_{1}+R_{2}}$
Knowing $\operatorname{Cos} I_{1}$, determine $\operatorname{Sin} I_{1}$.
$g=\left(R_{1}+R_{2}\right) \operatorname{Sin} I_{1}$
$\mathrm{T}_{\mathrm{L}}=\mathrm{g}+\mathrm{n}+\mathrm{L}$
(4) Measure T_{L} from the PI to locate the PC.
(5) Stake arc 1 to PRC from PC.
(6) Set instrument at the PT and verify the PRC (invert the telescope, sight on PI, plunge, and turn angle $I_{2} / 2$).
(7) Stake arc 2 to the PRC from PT.

For example, in figure 3-14, a reverse curve is to connect two diverging tangents with both arcs having a 5-degree curve. The surveyor locates the PI and measures the I angle as 41
degrees. The PT location is specified and the T_{s} is measured as 550 feet.

$$
\mathrm{R}_{1}=\mathrm{R}_{2}=\frac{50 \mathrm{ft}}{\operatorname{Sin} 1 / 2 \mathrm{D}}=\frac{50}{0.043619}=1,146.29 \mathrm{ft}
$$

$$
\text { Angle } \mathrm{s}=90^{\circ} \cdot \mathrm{I}=49^{\circ}
$$

$$
\mathrm{m}=\mathrm{T}_{\mathrm{s}} \operatorname{Tan} \mathrm{I}=550 \times 0.869287=478.11 \mathrm{ft}
$$

$$
\mathrm{L}=\frac{\mathrm{T}_{\mathrm{s}}}{\operatorname{Cos} \mathrm{I}}=\frac{550}{0.754710}=728.76 \mathrm{ft}
$$

$$
n=\left(R_{2}-m\right) \operatorname{Sin} I=(1,146.29-478.11) 0.656059
$$

$$
=438.37 \mathrm{ft}
$$

$$
p=\left(R_{2}-m\right) \operatorname{Cos} I=(1,146.29-478.11) 0.754710
$$

$$
=504.28 \mathrm{ft}
$$

$\operatorname{Cos} I_{1}=\frac{R_{1}+p}{R_{1}+R_{2}}=\frac{1,146.29+504.28}{1,146.29+1,146.29}=0.719962$
$\mathrm{I}_{1}=43^{\circ} 57^{\prime}$
$\mathbf{g}=\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \sin \mathrm{I}_{1}=(2,292.58) 0.694030=$
$1,591.12 \mathrm{ft}$
$\mathrm{T}_{\mathrm{L}}=\mathrm{g}+\mathrm{n}+\mathrm{L}=1,591.12+438.37+728.76=$ 2,758.25 ft

The PC is located by measuring T_{L}. The curve is staked using 5 -degree curve computations.

Section IV. TRANSITION SPIRALS

SPIRAL CURVES
In engineering construction, the surveyor often inserts a transition curve, also known as a spiral curve, between a circular curve and the tangent to that curve. The spiral is a curve of varying radius used to gradually increase the curvature of a road or railroad. Spiral curves are used primarily to reduce skidding and steering difficulties by gradual transition between straight-line and turning motion, and/or to provide a method for adequately superelevating curves.

The spiral curve is designed to provide for a gradual superelevation of the outer pavement edge of the road to counteract the centrifugal force of vehicles as they pass. The best spiral curve is one in which the superelevation increases uniformly with the length of the spiral from the TS or the point where the spiral curve leaves the tangent.

The curvature of a spiral must increase uniformly from its beginning to its end. At
the beginning, where it leaves the tangent, its curvature is zero; at the end, where it joins the circular curve, it has the same degree of curvature as the circular curve it intercepts.

Theory of A.R.E.A. 10-Chord Spiral
The spiral of the American Railway Engineering Association, known as the A.R.E.A. spiral, retains nearly all the characteristics of the cubic spiral. In the cubic spiral, the lengths have been considered as measured along the spiral curve itself, but measurements in the field must be taken by chords. Recognizing this fact, in the A.R.E.A. spiral the length of spiral is measured by 10
equal chords, so that the theoretical curve is brought into harmony with field practice. This 10 -chord spiral closely approximates the cubic spiral. Basically, the two curves coincide up to the point where $\Delta=15$ degrees. The exact formulas for this A.R.E.A. 10chord spiral, when Δ does not exeed 45 degrees, are given on pages 3-27 and 3-28.

Spiral Elements

Figures 3-15 and 3-16 show the notations applied to elements of a simple circular curve with spirals connecting it to the tangents.
$\mathrm{TS}=$ the point of change from tangent to spiral

Figure 3-15. Simple curve connected to its tangent with spirals
$\mathrm{SC}=$ the point of change from spiral to circular curve
$\mathrm{CS}=$ the point of change from circular curve to spiral
$\mathrm{ST}=$ the point of change from spiral to tangent

SS = the point of change from one spiral to another (not shown in figure 3-15) or figure 3-16)

The symbols PC and PT, TS and ST, and SC and CS become transposed when the direction of stationing is changed.
$\mathrm{a}=$ the angle between the tangent at the TS and the chord from the TS to any point on the spiral
$\mathrm{A}=$ the angle between the tangent at the TS and the chord from the TS to the SC
$\mathrm{b}=$ the angle at any point on the spiral between the tangent at that point and the chord from the TS
$B=$ the angle at the $S C$ between the chord from the TS and the tangent at the SC
$\mathrm{c}=$ the chord from any point on the spiral to the TS
$\mathrm{C}=$ the chord from the TS to the SC
$d=$ the degree of curve at any point on the spiral
$\mathrm{D}=$ the degree of curve of the circular arc
$\mathrm{f}=$ the angle between any chord of the spiral (calculated when necessary) and the tangent through the TS

I = the angle of the deflection between initial and final tangents; the total central angle of the circular curve and spirals
$\mathrm{k}=$ the increase in degree of curve per station on the spiral
$\mathrm{L}=$ the length of the spiral in feet from the TS to any given point on the spiral
$\mathrm{L}_{\mathrm{s}}=$ the length of the spiral in feet from the TS to the SC , measured in 10 equal chords
$0=$ the ordinate of the offsetted PC; the distance between the tangent and a parallel tangent to the offsetted curve
$r=$ the radius of the osculating circle at any given point of the spiral
$\mathrm{R}=$ the radius of the central circular curve
$\mathrm{s}=$ the length of the spiral in stations from the TS to any given point
$S=$ the length of the spiral in stations from the TS to the SC
$\mathrm{u}=$ the distance on the tangent from the TS to the intersection with a tangent through any given point on the spiral
$\mathrm{U}=$ the distance on the tangent from the TS to the intersection with a tangent through the SC; the longer spiral tangent
$\mathrm{v}=$ the distance on the tangent through any given point from that point to the intersection with the tangent through the TS
$\mathrm{V}=$ the distance on the tangent through the SC from the SC to the intersection with the tangent through the TS; the shorter spiral tangent
$\mathrm{x}=$ the tangent distance from the TS to any point on the spiral
$\mathrm{X}=$ the tangent distance from the TS to the SC
$y=$ the tangent offset of any point on the spiral
$\mathrm{Y}=$ the tangent offset of the SC
$\mathrm{Z}=$ the tangent distance from the TS to the offsetted PC ($\mathrm{Z}=\mathrm{X} / 2$, approximately)
$\delta=$ the central angle of the spiral from the TS to any given point
$\Delta=$ the central angle of the whole spiral

Figure 3-16. Enlargement of spiral of figure 3-15
$\mathrm{T}_{\mathrm{s}}=$ the tangent distance of the spiraled curve; distance from TS to PI, the point of intersection of tangents
$\mathrm{E}_{\mathrm{s}}=$ the external distance of the offsetted curve

Spiral Formulas

The following formulas are for the exact determination of the functions of the 10chord spiral when the central angle , Δ, does not exceed 45 degrees. These are suitable for the compilation of tables and for accurate fieldwork.
${ }^{(1)} \mathrm{d}=\mathrm{ks}=\frac{\mathrm{kL}}{100}$
${ }^{(2)} \mathrm{D}=\mathrm{kS}=\frac{\mathrm{kL}_{\mathrm{s}}}{100}$
(8) $\mathrm{X}=\mathrm{C} \operatorname{Cos} \mathrm{A}$
(9) $\mathrm{Y}=\mathrm{C} \operatorname{Sin} \mathrm{A}$
${ }^{(10)} \mathrm{U}=\mathrm{C}\left(\frac{\operatorname{Sin} \mathrm{B}}{\operatorname{Sin} \Delta}\right)$
${ }^{(11)} \mathrm{V}=\mathrm{C}\left(\frac{\operatorname{Sin} \mathrm{A}}{\operatorname{Sin} \Delta}\right)$
${ }^{(12)} \mathrm{R}=\frac{50 \mathrm{ft}}{\operatorname{Sin} 1 / 2 \mathrm{D}} \quad$ (chord definition)
(13) $Z=X-(R \operatorname{Sin} \Delta)$
(14) $\mathrm{o}=\mathrm{Y}-(\mathrm{R}$ Vers $\Delta)$
$($ Vers $\Delta=1-\operatorname{Cos} \Delta)$
(15) $\mathrm{T}_{\mathrm{s}}=(\mathrm{R}+\mathrm{o}) \operatorname{Tan}(1 / 2 \mathrm{I})+\mathrm{Z}$
(16) $\operatorname{Es}=(R+0) \operatorname{Exsec}(1 / 2 \mathrm{I})+0$
$(\operatorname{Exsec}(1 / 2 \mathrm{I})=\operatorname{Tan}(1 / 2 \mathrm{I})(\operatorname{Tan}(1 / 4 \mathrm{I}))$

Empirical Formulas

For use in the field, the following formulas are sufficiently accurate for practical purposes when Δ does not exceed 15 degrees.
$\mathrm{a}=\delta / 3$ (degrees)
$A=\Delta / 3 \prime($ degrees $)$
$\mathrm{a}=10 \mathrm{ks}^{2}$ (minutes)
$\mathrm{S}=10 \mathrm{kS}^{2}$ (minutes)

Spiral Lengths

Different factors must be taken into account when calculating spiral lengths for highway and railroad layout.

Highways. Spirals applied to highway layout must be long enough to permit the effects of centrifugal force to be adequately compensated for by proper superelevation. The minimum transition spiral length for
any degree of curvature and design speed is obtained from the the relationship $\mathrm{L}_{\mathrm{s}}=$ $1.6 \mathrm{~V}^{3} / \mathrm{R}$, in which L_{s} is the minimum spiral length in feet, V is the design speed in miles per hour, and R is the radius of curvature of the simple curve. This equation is not mathematically exact but an approximation based on years of observation and road tests.

Table 3-1 is compiled from the above equation for multiples of 50 feet. When spirals are inserted between the arcs of a compound curve, use $\mathrm{L}_{\mathrm{s}}=1.6 \mathrm{~V}^{3} / \mathrm{R}_{\mathrm{a}} . \mathrm{R}_{\mathrm{a}}$ represents the radius of a curve of a degree equal to the difference in degrees of curvature of the circular arcs.

Railroads Spirals applied to railroad layout must be long enough to permit an increase in superelevation not exceeding $1 \frac{1}{4}$ inches per second for the maximum speed of train operation. The minimum length is determined from the equation $\mathrm{L}_{\mathrm{s}}=1.17 \mathrm{EV}$. E is the full theoretical superelevation of the curve in inches, V is the speed in miles per hour, and L_{s} is the spiral length in feet.

This length of spiral provides the best riding conditions by maintaining the desired relationship between the amount of superelevation and the degree of curvature. The degree of curvature increases uniformly throughout the length of the spiral. The same equation is used to compute the length of a spiral between the arcs of a compound curve. In such a case, E is the difference between the superelevations of the two circular arcs.

SPIRAL CALCULATIONS

Spiral elements are readily computed from the formulas given on pages 3-25 and 3-26. To use these formulas, certain data must be known. These data are normally obtained from location plans or by field measurements.

The following computations are for a spiral when D, V, PI station, and I are known.
$\mathrm{D}=4^{\circ}$
$\mathrm{I}=24^{\circ} 10^{\prime}$

Table 3-1. Recommended superelevation and minimum transition lengths

D	30 mph		40 mph		50 mph		60 mph		70 mph	
	$\theta \mathbf{L s}$		$\theta \mathrm{Ls}$		$\theta \mathrm{Ls}$		$\theta \mathrm{Ls}$		$\theta \mathrm{Ls}$	
1-00	0	0	0	0	0	0	0	0	0	0
1-30	. 01	150	. 02	150	. 02	150	. 04	150	. 05	150
2-00	. 01	150	. 02	150	. 03	150	. 05	150	. 06	200
2.30	. 21	150	. 03	150	. 04	150	. 06	150	. 08	250
3-00	. 02	150	. 03	150	. 05	150	. 07	200	. 09	300
3-30	. 02	150	. 04	150	. 06	150	. 08	200	. 10	350
4	. 02	150	. 04	150	. 06	150	. 09	250	. 10	400
5	. 03	150	. 05	150	. 08	150	. 10	300		
6	. 03	150	. 06	150	. 10	200	. 10	350		
7	. 04	150	. 07	150	. 10	250				
8	. 05	150	. 08	150		300				
9	. 05	150	. 09	150	. 10	300				
10	. 06	150	. 10	200						
11	. 06	150	. 10	200						
12	. 07	150	. 10	200						
13	. 07	150	. 10	250						
14	. 08	150		250						
15	. 09	150								
16	. 09	150								
17	. 10	150								
18	. 10	150								
19	. 10	150								
20	. 10	150								
21	. 10	150								
22	. 10	150								
23	. 10	150								
24	. 10	200								
25	. 10	200								

PI station $=42+61.70$
$\mathrm{V}=60 \mathrm{mph}$

Determining L_{s}

(1) Assuming that this is a highway spiral, use either the equation on page 3-28 or table 3-1.
(2) From table 3-1, when $\mathrm{D}=4^{\circ}$ and $\mathrm{V}=60$ mph , the value for Ls is 250 feet.

Determining Δ
(1) $\Delta=\frac{\mathrm{DL}_{\mathrm{s}}}{200}$
${ }^{(2)} \Delta=\frac{4(250)}{200}=50$

Determining o

(1) $o=Y$ - (R Vers $\Delta)$
(2) From page 3-28

$$
\mathrm{R}=\frac{50 \mathrm{ft}}{\operatorname{Sin} 1 / 2 \mathrm{D}^{\circ}}
$$

$$
\mathrm{R}=\frac{50 \mathrm{ft}}{.0348994}
$$

$$
\mathrm{R}=1,432.69 \mathrm{ft}
$$

Using $\Delta=5^{\circ}$, we find (see table A-9), $\mathrm{Y}=0.029073 \times \mathrm{L}_{\mathrm{s}}$
$\mathrm{Y}=0.029073 \times 250$
$\mathrm{Y}=7.27 \mathrm{ft}$
(3) $\mathrm{o}=\mathrm{Y} \cdot(\mathrm{R}$ Vers $\Delta)$
$($ Vers $\Delta=1-\operatorname{Cos} \Delta)$
$\mathrm{o}=7.27-(1,432.69 \times 0.00381)$
$\mathrm{o}=1.81 \mathrm{ft}$

Determining \mathbf{Z}

(l) $Z=X-(R \operatorname{Sin} A)$
(2) From table A-9 we see that
$\mathrm{X}=.999243 \times \mathrm{L}$
$\mathrm{X}=.999243 \times 250$
$\mathrm{X}=249.81 \mathrm{ft}$
$\mathrm{R}=1,432.69 \mathrm{ft}$
$\operatorname{Sin} 5^{\circ}=0.08716$
(3) $\mathrm{Z}=249.81-(1,432.69 \mathrm{X} 0.08716)$
$\mathrm{Z}=124.94 \mathrm{ft}$
Determining T_{s}
(l) $T_{s}=(R+o) \operatorname{Tan}(1 / 2 I)+Z$
(2) From the previous steps, $R=1,432.69$ feet, $0=1.81$ feet, and $Z=124.94$ feet.
(3) Tan $\underline{1} \cdot \operatorname{Tan} 24^{\circ} 10^{\prime}=\operatorname{Tan} 12^{\circ} 05^{\prime}=0.21408$
(4) $\mathrm{T}_{\mathrm{s}}=(1,432.69+1.81)(0.21408)+124.94$
$\mathrm{T}_{\mathrm{s}}=432.04 \mathrm{ft}$

Determining Length of the Circular $\operatorname{Arc}\left(\mathbf{L}_{\mathrm{a}}\right)$

${ }^{(1)} L_{a}=\frac{I-2 \Delta}{D} \times 100$
(2) $\mathrm{I}=24^{\circ} 10^{\prime}=24.16667^{\circ}$
$\mathrm{A}=5$ "
$\mathrm{D}=4^{\circ}$
(3) $\mathrm{L},=\frac{24.16667-10}{4} \times 100=354.17 \mathrm{ft}$

Determining Chord Length
(1) Chord length \pm_{S}

10
(2) Chord length=250 $\frac{\mathrm{ft}}{10}$

Determining Station Values
With the data above, the curve points are calculated as follows:

Station PI	$=42+61.70$	
Station TS	$=\frac{-4+32.04}{38+29.66}$	$=T_{s}$
Station TS	$=\frac{+2+50 .()()}{40+79.66}$	$=\mathrm{L}$,
Station SC	$=\frac{+3+54.17}{44+33.83}$	$=\mathrm{L}_{\mathrm{a}}$
Station CS	$=\frac{+2+50 .()()}{46+83,83}$	$=\mathrm{L}_{\mathrm{s}}$

Determining Deflection Angles

One of the principal characteristics of the spiral is that the deflection angles vary as the square of the distance along the curve.

$$
\frac{\mathrm{a}}{\mathrm{~A}}:: \frac{\underline{\mathrm{L}}^{2}}{\mathrm{~L}_{\mathrm{s}}^{2}}
$$

From this equation, the following relationships are obtained:

$$
a_{1}=\frac{(1)^{2}}{(10)^{2}} A, a_{2}=4 a_{1}, a_{3}=9 a,=16 a_{1}, \ldots a_{9}=
$$

$81 a_{1}$, and $\mathrm{a}_{10}=100 \mathrm{a}_{1}=\mathrm{A}$. The deflection angles to the various points on the spiral from the TS or ST are $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3} \ldots \mathrm{a}_{9}$ and a_{10}. Using these relationships, the deflection angles for the spirals and the circular arc are
computed for the example spiral curve.
Page 3-27 states that

$$
\mathrm{D}=\frac{\mathrm{kL}}{100}
$$

Hence, $k=\frac{\mathrm{D}(100)}{\mathrm{L}_{\mathrm{s}}}=\frac{\mathrm{D}(100)}{250}=1.6$
Page 3-28 states that $\mathbf{a}=\mathrm{ks}^{2}$.

Station
$38+29.66$ (TS)
$+54.66$
$+79.66$
$39+04.66$
$+29.66$
$39+54.66$
$+79.66$
$40+04.66$
$+29.66$
$+54.66$
$40+79.66$ (SC)
$41+00.00$
42
43
44
+33.83 (CS)

Deflection Angle

a_{0}	$=0^{\circ} 00^{\prime}$
$\mathrm{a}_{1}=10 \mathrm{ks}^{2}=10(1.6)(0.25)^{2}$	$=0^{\circ} 01^{\prime}$
$\mathrm{a}_{2}=4 \mathrm{a}_{1}$	$=0^{\circ} 04^{\prime}$
$\mathrm{a}_{3}=9 \mathrm{a}_{1}$	$=0^{\circ} 09^{\prime}$
$\mathrm{a}_{4}=16 \mathrm{a}_{1}$	$=0^{\circ} 16^{\prime}$
$\mathrm{a}_{5}=25 \mathrm{a}_{1}$	$=0^{\circ} 25^{\prime}$
$\mathrm{a}_{6}=36 \mathrm{a}_{1}$	$=0^{\circ} 36^{\prime}$
$\mathrm{a}_{7}=49 \mathrm{a}_{1}$	$=0^{\circ} 49^{\prime}$
$\mathrm{a}_{8}=64 \mathrm{a}_{1}$	$=1^{\circ} 04^{\prime}$
$\mathrm{a}_{9}=81 \mathrm{a}_{1}$	$=1^{\circ} 21^{\prime}$
$\mathrm{a}_{10}=100 \mathrm{a}_{1}=\mathrm{A}=\Delta / 3$	$=1^{\circ} 40^{\prime}$
$\mathrm{d}_{1}=0.3 \mathrm{c}_{1} \mathrm{D}=0.3^{\prime}(20.34)(4)$	$=0^{\circ} 24.4{ }^{\prime}$
$\mathrm{d}_{2}=\mathrm{d}_{1}+\mathrm{D} / 2$	$=2^{\circ} 24.4{ }^{\prime}$
$\mathrm{d}_{3}=\mathrm{d}_{2}+\mathrm{D} / 2$	$=4^{\circ} 24.4{ }^{\prime}$
$\mathrm{d}_{4}=\mathrm{d}_{3}+\mathrm{D} / 2$	$=6^{\circ} 24.4^{\prime}$
$\mathrm{d}_{5}=\mathrm{d}_{4}+0.3 \mathrm{c}_{2} \mathrm{D}$	
$=6^{\circ} 24.4{ }^{\prime}+0.3^{\prime}(33.83)(4)$	
$=\underline{\mathrm{I}-2 \Delta}$	
2	

$$
=\underline{24^{\circ} 10^{\prime}-10^{\circ}}=7^{\circ} 05^{\prime}
$$

2

$$
\mathrm{a}_{10}=\mathrm{A}=\frac{\Delta}{3} \quad=\frac{5}{3} \quad=1^{\circ} 40^{\prime}
$$

+58.83	$\mathrm{a}_{9}=81 \mathrm{a}_{1}$	$=1^{\circ} 21^{\prime}$
+83.83	$\mathrm{a}_{8}=64 \mathrm{a}_{1}$	$=1^{\circ} 04^{\prime}$
$45+08.83$	$\mathrm{a}_{7}=49 \mathrm{a}_{1}$	$=0^{\circ} 49^{\prime}$
+33.83	$\mathrm{a}_{6}=36 \mathrm{a}_{1}$	$=0^{\circ} 36^{\prime}$
+58.83	$\mathrm{a}_{5}=25 \mathrm{a}_{1}$	$=0^{\circ} 25^{\prime}$
+83.83	$\mathrm{a}_{4}=16 \mathrm{a}_{1}$	$=0^{\circ} 16^{\prime}$
$46+08.83$	$\mathrm{a}_{3}=9 \mathrm{a}_{1}$	$=0^{\circ} 09^{\prime}$
+3383	$\mathrm{a}_{2}=4 \mathrm{a}_{1}$	$=0^{\circ} 04^{\prime}$
+58.83	$\mathrm{a}_{1}=10 \mathbf{k s}^{2}=10(1.6)(0.25)^{2}$	$=0^{\circ} 01^{\prime}$
$+83.83($ ST $)$	a_{0}	

SPIRAL CURVE LAYOUT

The following is the procedure to lay out a spiral curve, using a one-minute instrument with a horizontal circle that reads to the right. Figure 3-17 illustrates this procedure.

Setting TS and ST

With the instrument at the PI, the instrumentman sights along the back tangent and keeps the head tapeman on line while the tangent distance $\left(\mathrm{T}_{\mathrm{s}}\right)$ is measured. A stake is

Figure 3-17. Staking a spiraled circular curve
set on line and marked to show the TS and its station value.

The instrumentman now sights along the forward tangent to measure and set the ST.

Laying Out First Spiral from TS to SC

Set up the instrument at the TS, pointing on the PI, with $0^{\circ} 00^{\prime}$ on the horizontal circle.
(1) Check the angle to the ST, if possible. The angle should equal one half of the I angle if the TS and ST are located properly.
(2) The first deflection ($\mathrm{a}_{1} / 0^{\circ} 01^{\prime}$) is subtracted from 360 degrees, and the remainder is set on the horizontal circle. Measure the standard spiral chord length (25 feet) from the TS, and set the first spiral station $(38+54.66)$ on line.
(3) The remaining spiral stations are set by subtracting their deflection angles from 360 degrees and measuring 25 feet from the previously set station.

Laying Out Circular Arc from SC to CS

Set up the instrument at the SC with a value of A minus A ($5^{\circ} 00^{\prime}-1^{\circ} 40^{\prime}=3^{\circ} 20^{\prime}$) on the horizontal circle. Sight the TS with the instrument telescope in the reverse position.
(1) Plunge the telescope. Rotate the telescope until $0^{\circ} 00^{\prime}$ is read on the horizontal circle. The instrument is now sighted along the tangent to the circular arc at the SC.
(2) The first deflection ($\mathrm{d}_{1} / 0^{\circ} 24^{\prime}$) is subtracted from 360 degrees, and the remainder is set on the horizontal circle. The first subchord ($\mathrm{c}_{1} / 20.34$ feet) is measured from the SC, and a stake is set on line and marked for station $41+00$.
(3) The remaining circular arc stations are set by subtracting their deflection angles from 360 degrees and measuring the corresponding chord distance from the previously set station.

Laying Out Second Spiral from ST to CS
Set up the instrument at the ST, pointing on the PI, with $0^{\circ} 00^{\prime}$ on the horizontal circle.
(1) Check the angle to the CS. The angle should equal $1^{\circ} 40^{\prime}$ if the CS is located properly.
(2) Set the spiral stations using their deflection angles in reverse order and the standard spiral chord length (25 feet).

Correct any error encountered by adjusting the circular arc chords from the SC to the CS.

Intermediate Setup

When the instrument must be moved to an intermediate point on the spiral, the deflection angles computed from the TS cannot be used for the remainder of the spiral. In this respect, a spiral differs from a circular curve.

Calculating Deflection Angles Following are the procedures for calculating the deflection angles and staking the spiral.

Example: D $=4^{\circ}$
$\mathrm{Ls}=250 \mathrm{ft}$ (for highways)
$\mathrm{V}=60 \mathrm{mph}$
$\mathrm{I}=24^{\circ} 10^{\prime}$
Point 5 = intermediate point
(1) Calculate the deflection angles for the first five points These angles are: $a_{1}=0^{\circ}$ $01^{\prime}, a_{2}=0^{\circ} 04^{\prime}, a_{3}=0^{\circ} 09^{\prime}, a_{4}=0^{\circ} 16^{\prime}$, and a_{5} $=00^{\circ} 25^{\prime}$.
(2) The deflection angles for points $6,7,8,9$, and 10 , with the instrument at point 5 , are
calculated with the use of table 3-2. Table $3-2$ is read as follows: with the instrument at any point, coefficients are obtained which, when multiplied by a_{1}, give the deflection angles to the other points of the spiral. Therefore, with the instrument at point 5 , the coefficients for points $6,7,8,9$, and 10 are $16,34,54,76$, and 100 , respectively.

Multiply these coefficients by a_{1} to obtain the deflection angles. These angles are a6 $=16 a_{1}=0^{\circ} 16^{\prime}, a_{1}=34 a_{1}=0034^{\prime}, a_{8}=54 a_{1}=$ $0^{\circ} 54^{\prime}, \mathrm{a}_{9}=76 \mathrm{a}_{1}=1^{\circ} 16^{\prime}$, and $\mathrm{a}_{10}=100 \mathrm{a}_{1}=$ $1^{\circ} 40^{\prime}$.
(3) Table 3-2 is also used to orient the instrument over point 5 with a backsight
on the TS. The angular value from point 5 to point zero (TS) equals the coefficient from table 3-2 times a_{1}. This angle equals $50 a_{1}=0^{\circ} 50^{\prime}$.

Staking. Stake the first five points according to the procedure shown on page 3-33. Check point 5 by repetition to insure accuracy.

Set up the instrument over point 5. Set the horizontal circle at the angular value determined above. With the telescope inverted, sight on the TS (point zero).

Plunge the telescope, and stake the remainder of the curve (points $6,7,8,9$, and 10) by subtracting the deflection angles from 360 degrees.

Table 3-2. Coefficients of a_{1} for deflection angles to chord points

	Transit at chord-point number										
point number	$\begin{gathered} 0 \\ \text { TS } \end{gathered}$	1	2	3	4	5	6	7	8	9	10 SC
OTS	0	2	8	18	32	50	72	98	128	162	200
1	1	0	5	14	27	44	65	90	119	152	189
2	4	4	0	8	20	36	56	80	108	140	176
3	9	10	7	0	11	26	45	68	95	126	161
4	16	18	16	10	0	14	32	54	80	110	144
5	25	28	27	22	13	0	17	38	63	92	125
6	36	40	40	36	28	16	0	20	44	72	104
7	49	54	55	52	45	34	19	0	23	50	81
8	64	70	72	70	64	54	40	22	0	26	56
9	81	88	91	90	85	76	63	46	25	0	29
10SC	100	108	112	112	108	100	88	72	52	28	0

Field Notes for Spirals. Figure 3-18 shows a typical page of data recorded for the layout

ROUTE 318 SPIRAL LOCATION SURUEY FROM STA $38+00-40+79.66$ designation \qquad date TANG 1984					
STA	AHN	$\begin{aligned} & \text { DEFL } \\ & \text { MNGGE } \end{aligned}$			
$38 .+00$					
$39+29.66$	TS	$0^{\circ} 00^{\prime}$			
$38+5866$		$0^{\circ} 01^{\prime \prime}$			
$30+79.66$		$0^{\circ} 04^{\prime}$			
39+04.66		$0^{\circ} 09^{\prime}$			
$39+29.66$		$0^{\circ} 16^{\prime}$			
$39+54.64$		$0^{\circ} 25^{\prime}$			
39+79.46		$0^{\circ} 36^{\prime}$			
$40+04.66$		$0^{\circ} 49^{\prime}$			
$40+29.66$		$100{ }^{\prime}$			
$40+57.66$		$1{ }^{\circ} \mathbf{1 1}^{\prime}$			
$40+77.64$	Sc	$10^{\prime} 40^{\prime}$			

of a spiral. The data were obtained from the calculations shown on page 3-31.

Figure 3-18. Sample of spiral field notes

Section V. VERTICAL CURVES

FUNCTION AND TYPES

When two grade lines intersect, there is a vertical change of direction. To insure safe and comfortable travel, the surveyor rounds off the intersection by inserting a vertical parabolic curve. The parabolic curve provides a gradual direction change from one grade to the next.

A vertical curve connecting a descending grade with an ascending grade, or with one descending less sharply, is called a sag or invert curve. An ascending grade followed by a descending grade, or one ascending less sharply, is joined by a summit or overt curve.

COMPUTATIONS

In order to achieve a smooth change of direction when laying out vertical curves, the grade must be brought up through a series of elevations. The surveyor normally determines elevation for vertical curves for the beginning (point of vertical curvature or PVC), the end (point of vertical tangency or PVT), and all full stations. At times, the surveyor may desire additional points, but this will depend on construction requirements.

Length of Curve

The elevations are vertical offsets to the tangent (straightline design grade)
elevations. Grades G_{1} and G_{2} are given as percentages of rise for 100 feet of horizontal distance. The surveyor identifies grades as plus or minus, depending on whether they are ascending or descending in the direction of the survey. The length of the vertical curve (L) is the horizontal distance (in 100 -foot stations) from PVC to PVT. Usually, the curve extends $1 / 2 \mathrm{~L}$ stations on each side of the point of vertical intersection (PVI) and is most conveniently divided into full station increments.

A sag curve is illustrated in figure 3-20. The surveyor can derive the curve data as follows (with BV and CV being the grade lines to be connected).

Determine values of G_{1} and G_{2}, the original grades. To arrive at the minimum curve length (L) in stations, divide the algebraic difference of G_{1} and $\mathrm{G}_{2}(\mathrm{AG})$ by the rate of change (r), which is normally included in the design criteria. When the rate of change (r) is not given, use the following formulas to compute L:
(Summit Curve)
$\mathrm{L}=125 \mathrm{ft} \frac{\left(\mathrm{G}_{2}-\mathrm{G}_{1}\right)}{4}$ or $\mathrm{L}=38.10 \mathrm{~m} \frac{\left(\mathrm{G}_{2}-\mathrm{G}_{1}\right)}{4}$
(Sag Curve)
$\mathrm{L}=100 \mathrm{ft} \frac{\left(\mathrm{G}_{2}-\mathrm{G}_{1}\right)}{4}$ or $\mathrm{L}=30.48 \mathrm{~m} \frac{\left(\mathrm{G}_{2}-\mathrm{G}_{1}\right)}{4}$
If L does not come out to a whole number of stations from this formula, it is usually extended to the nearest whole number. Note that this reduces the rate of change. Thus, $\mathrm{L}=$ 4.8 stations would be extended to 5 stations, and the value of r computed from $r=\Delta G / L$. These formulas are for road design only. The surveyor must use different formulas for railroad and airfield design.

Station Interval

Once the length of curve is determined, the surveyor selects an appropriate station interval (SI). The first factor to be considered
is the terrain. The rougher the terrain, the smaller the station interval. The second consideration is to select an interval which will place a station at the center of the curve with the same number of stations on both sides of the curve. For example, a 300 -foot curve could not be staked at 100 -foot intervals but could be staked at $10-$, $25-$ - $30-, 50$-, or 75 -foot intervals. The surveyor often uses the same intervals as those recommended for horizontal curves, that is $10,25,50$, and 100 feet.

Since the PVI is the only fixed station, the next step is to compute the station value of the PVC, PVT, and all stations on the curve.
$\mathrm{PVC}=\mathrm{PVI}-\mathrm{L} / 2$
$\mathrm{PVT}=\mathrm{PVI}+\mathrm{L} / 2$

Other stations are determined by starting at the PVI, adding the SI, and continuing until the PVT is reached.

Tangent Elevations

Compute tangent elevations PVC, PVT, and all stations along the curve. Since the PVI is the fixed point on the tangents, the surveyor computes the station elevations as follows:

Elev PVC = Elev PVI $+\left(-1 \times \mathrm{L} / 2 \times \mathrm{G}_{\mathrm{a}}\right)$
Elev PVT = Elev PVI $+\left(\mathrm{L} / 2 \times \mathrm{G}_{2}\right)$
The surveyor may find the elevation of the stations along the back tangent as follows:

Elev of sta $=$ Elev of PVC + (distance from the PVC x G ${ }_{1}$).

The elevation of the stations along the forward tangent is found as follows:
Elev of sta $=$ Elev of PVI + (distance from the PVI x G ${ }_{2}$)

Vertical Maximum

The parabola bisects a line joining the PVI and the midpoint of the chord drawn between the PVC and PVT. In figure 3-19, line $\mathrm{VE}=$

Figure 3-19. Grade lines connected by a vertical curve

DE and is referred to as the vertical maximum (Vm). The value of Vm is computed as follows: ($\mathrm{L}=$ length in 100 -foot stations. In a 600 -foot curve, $\mathrm{L}=6$.)
$\mathrm{Vm}=\mathrm{L} / 8\left(\mathrm{G}_{2}-\mathrm{G}_{1}\right)$ or
Vm $=1 / 2\left(\left(\frac{\text { Elev PVC }+ \text { Elev PVT }}{2}\right)-\right.$ Elev PVI $)$
In practice, the surveyor should compute the value of Vm using both formulas, since working both provides a check on the Vm, the elevation of the PVC, and the elevation of the PVT.

Vertical Offset. The value of the vertical offset is the distance between the tangent line and the road grade. This value varies as the square of the distance from the PVC or PVT and is computed using the formula:

Vertical Offset $=(\text { Distance })^{2} \times V m$
A parabolic curve presents a mirror image. This means that the second half of the curve is identical to the first half, and the offsets are the same for both sides of the curve.

Station Elevation. Next, the surveyor computes the elevation of the road grade at each of the stations along the curve. The elevation of the curve at any station is equal to the tangent elevation at that station plus or minus the vertical offset for that station, The sign of the offset depends upon the sign of Vm (plus for a sag curve and minus for a summit curve).

First and Second Differences. As a final step, the surveyor determines the values of the first and second differences. The first differences are the differences in elevation between successive stations along the curve, namely, the elevation of the second station minus the elevation of the first station, the elevation of the third station minus the elevation of the second, and so on. The second differences are the differences between the differences in elevation (the first differences), and they are computed in the same sequence as the first differences.

The surveyor must take great care to observe and record the algebraic sign of both the first and second differences. The second differences provide a check on the rate of change
per station along the curve and a check on the computations. The second differences should all be equal. However, they may vary by one or two in the last decimal place due to rounding off in the computations. When this happens, they should form a pattern. If they vary too much and/or do not form a pattern, the surveyor has made an error in the computation.

Example: A vertical curve connects grade lines G_{1} and G_{2} (figure 3-19). The maximum allowable slope (r) is 2.5 percent. Grades G_{1} and G_{2} are found to be -10 and +5 .
$\mathrm{L}=\frac{\Delta \mathrm{G}}{\mathrm{r}}=\frac{15}{2.5}=6$ stations
$\mathrm{V}_{\mathrm{m}}=\frac{\Delta \mathrm{GxL}}{8}=\frac{(15)(6)}{8}=11.25 \mathrm{ft}$

Figure 3-20. Typical solution of a sag curve
minus tangent grades are encountered, the high or low point will fall on the side of the curve that has the flatter gradient.
Horizontal Distance. The surveyor determines the distance (x, expressed in stations) between the PVC or PVT and the high or low point by the following formula:

$$
x=G \frac{L}{\left(G_{2} \cdot G_{1}\right)}
$$

G is the flatter of the two gradients and L is the number of curve stations.

Vertical Distance. The surveyor computes the difference in elevation (y) between the PVC or PVT and the high or low point by the formula

$$
y=\frac{-\left(G_{2}-G_{1}\right)}{2 L}\left(x^{2}\right)+G x
$$

Example: From the curve in figure 3-21, $\mathrm{G}_{1}=+$ $3.2 \%, \mathrm{G}_{2}=-1.6 \% \mathrm{~L}=4(400)$. Since G_{2} is the flatter gradient, the high point will fall between the PVI and the PVT.

$$
\begin{aligned}
x & =G \frac{L}{G_{2}-G_{1}}=-1.6 \frac{4}{-1.6-(+3.2)}=1.3333 \mathrm{sta} \\
& =133.33 \text { feet }
\end{aligned}
$$

PVT $\cdot x$ = sta of high point
$(16+00)-133.33=14+66.67$

$$
y=\frac{-\left(G_{2}-G_{1}\right)}{2 L}\left(x^{2}\right)+G x
$$

Elev PT + y = elev high point $128.00+1.07=129.07$

Figure 3-21. Typical solution of a summit curve

CHAPTER 4 EARTHWORK

Section I. PLANNING OF EARTHWORK OPERATIONS

IMPORTANCE

In road, railroad, and airfield construction, the movement of large volumes of earth (earthwork) is one of the most important construction operations. It requires a great amount of engineering effort.

The planning, scheduling, and supervising of earthwork operations are of major importance in obtaining an efficiently operated construction project. To plan a schedule, the quantities of clearing, grubbing, and stripping, as well as the quantities and positions of cuts and fills, must be known. Then, the most efficient type and number of pieces of earthmoving equipment can be chosen, the proper number of personnel assigned, and the appropriate time allotted.

Earthwork computations involve the calculation of volumes or quantities, the
determination of final grades, the balancing of cuts and fills, and the planning of the most economical haul of material. The surveyor uses field notes and established grade to plot the cross sections at regular stations and at any plus stations which may have been established at critical intermediate points. The line representing the existing ground surface and those lines representing the proposed cut or fill enclose cross-section areas. The surveyor uses these areas and the measured distances along the centerline to compute earthwork volumes.

CROSS SECTIONS

The cross section used in earthwork computations is a vertical section. It is perpendicular to the centerline at full and plus stations and represents the boundaries
of a proposed or existing cut or fill. Typical cross sections for a roadbed are illustrated in figure 4-1.

The determination of cross-section areas is simplified when the sections are plotted on cross-section paper. This is usually done to the same vertical and horizontal scale, standard practice being 1 inch equals 10 feet.

However, if the vertical cut or fill is small in comparison with the width, the surveyor may use an exaggerated vertical scale to gain additional precision in plotting such sections.

The surveyor must take care, however, when computing areas of this type of plotted section that the proper area is obtained. For example, a 1 inch equals 10 foot scale, both vertical and

Figure 4-1. Typical cross sections
horizontal, yields 100 square feet, but 1 inch equals 10 foot horizontal and 1 inch equals 2 foot vertical yields only 20 square feet. An exaggerated vertical scale is used in figure 4-2 to illustrate a five-level section.

The side slopes of a cross section are expressed by a ratio of horizontal distance to vertical distance. A $1 \frac{1}{2}: 1$ side slope indicates a slope extending $1 \frac{1}{2}$ feet horizontally per foot of vertical rise or fall. Slopes may be inclined
more or less sharply than this, such as $3: 1$, $2: 1$, or $1: 1$. The surveyor usually determines the slope by the design specifications based on the stability of the soil in cut or fill. However, the need for economy in construction operations must often be considered. For example, cut slopes may be flattened more than is required by soil characteristics solely to produce enough material for a nearby fill. This practice is more economical than operating a borrow pit to obtain this material.

Figure 4-2. Area of irregular cross sections

Section II. AREAS

area computation

The surveyor can determnecross-section areas for construction earthwork volumes by one of the following methods: the counting squares method, the geometric method (geometry of trapezoids and triangles), the stripper method, or the double-meridiandistance method. The stripper and counting-
the-squares methods are simple and given approximate results, while the other methods give results as accurate as the cross-section field data will permit. Standard practice requires that cut and fill areas of a cross section, where both occur simultaneously, be determined separately.

Counting-Squares Method

To make a hasty approximation of a crosssection area plotted on cross-section paper, count the number of squares enclosed by the boundary lines of the section. Then multiply the total number of counted squares by the number of square feet represented by a single square.
For example, the cross section in figure 4-2 encloses approximately $3501 / 10$-inch squares or 3.5 l-inch squares. The scales of the cross section indicate that one $1 / 10$-inch square represents 1 foot horizontally and 6 inches vertically, or one half of a square foot in area. Therefore, the approximate area of the cross section is 350 divided by 2 equals 175 square feet. Using the 1 -inch square, which represents 10 feet horizontally and 5 feet vertically or 50 square feet in area, the crosssection area is approximately $3.5 \times 50=175$ square feet.

Geometric Method

To compute the area of a cross section by the geometric method, sometimes called the trapezoidal method, subdivide the area into simple geometrical figures, calculate each area according to its geometry, and total the results. There is no set rule for performing the subdivisions. The computer selects those subdivisions which will produce the most direct and accurate results. Figure 4-3a illustrates the subdivision of a typical threelevel section into five triangles. Figure 4-3b illustrates the subdivision of a five-level section into two triangles and two trapezoids. The following computations apply to the geometric method in figure 4-2. Basic formulas are as follows.

$$
\begin{aligned}
& A=\frac{b h}{2} \text { (area of a triangle) } \\
& A=h \frac{\left(b_{1}+b_{2}\right)}{2} \text { (area of a trapezoid) }
\end{aligned}
$$

$A=$ area; b, b_{1}, and $b_{2}=$ the lengths of the bases; and $\mathrm{h}=$ the perpendicular distance, or height, between parallel bases for a trapezoid and from base to vertex for a triangle.

> square feet

2 A of triangle $\mathrm{AJK}=5.7 \times 4.0 \quad=22.8$
2 A of triangle $\mathrm{ABJ}=5.2(5.7+6.0) \quad=60.8$
2 A of trapezoid BCIJ $=9.3(5.2+4.2)=87.4$
2 A of trapezoid CDHI $=15.0(4.2+4.7 ;=133.5$
2 A of trapezoid DEGH $=4.8(4.7+1.5)=29.8$
2 A of triangle $\mathrm{EFG}=1.5 \times 4.5=6.8$
Total (double area of AFHK) $\quad=\underline{341.1}$
Area of the cross section $=341.1 \div 2=170.5$
Note that the computation is simplified by adding all the numerical products for triangles and trapezoids together and then dividing the total by 2 . The dashed line, AJ , is added to subdivide quadrilateral ABJK into two triangles, AJK and ABJ.

Stripper Method

To determine the area of a plotted cross section by strip measurements, subdivide the area into strips by vertical lines spaced at regular intervals. Measure the total length of these lines by cumulatively marking the length of each line along the edge of a stripper made of paper or plastic. Then, multiply the cumulative total of the average base lengths by the width of the strip. Regular

Figure 4-3. Subdividing cross sections
intervals of 3 , 5 , or 10 feet, depending upon the roughness of the ground, give satisfactory results for strip widths. Due regard must be
given to the horizontal and vertical scales of the cross section. The procedure is illustrated in figure 4-4.

A

C

D

Figure 4-4. Cross-section area by stripper method

The stripper shown is 5 squares wide by 60 squares long. Its zero index is placed at the intersection of the ground and side-slope line of the section.

The stripper is moved an interval of 5 squares to the right with zero reading at the bottom. It is then moved another 5 squares to the right with the previous top reading (2.5) now adjacent to the bottom line. The stripper is again moved 5 squares to the right for another interval with the previous top reading (6.0) adjacent to the bottom line.
This process of moving 5 squares to the right and bringing the top reading to the bottom line is continued until the stripper reaches the right edge of the cross section with a final reading of 53.0. Multiply this last reading (53.0) by the strip width used (5) to get the number of squares in the section (265.0). To find the area of the cross section in square feet, multiply the number of squares by the area in square feet of one square.

Double-MeridianDistance Method

The double-meridian-distance (DMD) method gives a more precise value for a cross-section area than the stripper method. It does, however, involve more effort and time. It is essential that the elevations (latitudes) and the distance from the centerline (departures) of all points on the cross section be known.
The method is based on the theory that the area of a right triangle equals one half of the product of the two sides. Since latitudes and departures are at right angles to each other, the area bounded by the distance, the latitude, and the departure is a right angle. The surveyor can determine this area by taking one half of the product of the latitude and the departure. However, depending on its location, the triangle may add to or subtract from the total area of the irregular figure.

To avoid determining a plus or minus area for each triangle, a slight refinement is made. The departure is added twice. It is first added when determining the DMD of the course and
second, when determining the next course's DMD. Multiplying the DMD of each course by its latitude results in twice the area, but the sign of this product illustrates whether the area adds to or subtracts from the figure area.

A step-by-step procedure to work out $a \mathrm{DMD}$ area is given below and illustrated in figure 4-5.
(1) Compute and record all the latitudes and departures.
(2) Select the far left station (D) as the first point and D-E as the first course to avoid negative areas in the DMD.
(3) The DMD of the first course equals the departure of the course itself, 4.0.
(4) The DMD of any other course (E-F) equals the DMD of the preceding course (D-E) plus the departure of the preceding course (D-E) and the departure of the course (EF) itself or $4.0+4.0+30,0=38.0$. For the next course (F-I), the same procedure is followed. Add together the DMD of the preceding course, the departure of the preceding course, and the departure of the course itself, or $38.0+30.0+30.0=98.0$.
(5) The DMD of the last course is numerically equal to its departure but with the opposite $\operatorname{sign}(+14.0)$.
(6) Multiply each DMD value by its latitude. Positive products are entered under north double areas and negative products under south double areas.
(7) The sum of all north double areas minus the sum of all the south double areas, DISREGARDING THE SIGNS, equals twice the cross-section areas. Divide this double area by 2 to get the true crosssection area.

Course	Latitude	Departure	- P.M. 0.	NORTA Double AREA (+)	South Double Area (-)
$D-E$	+1.0	$+4.0$	4.0	4.0	
$E-F$	$+1.5$	+ 30.0	38.0	57.0	
$F-I$	-1.5	+30.0	98.0		147.0
I-H	-1.8	+ 7.0	135.0		243.0
H-G	-0.9	-22.0	120.0		108.0
$G-A$	to. 8	-15.0	83.0	66.4	
$A-B$	+0.1	- 5.0	63.0	6.3	
$B-C$	- 1.1	-15.0	43.0		47.3
$C-D$	+1.9	-14.0	14.0	26.6	
				$+160.3$	-545.3
$\begin{aligned} & \text { Difference }=545.3-160.3=385.0 \\ & \text { Area: } 385.0 / 2=192.5 \mathrm{ft}^{2} \end{aligned}$					

Figure 4-5. Cross-section area by double-meridian-distance method

AREA BY PLANIMETER

The surveyor uses a polar planimeter to measure the area of a plotted figure. There are two types of planimeters. One has a fixed scale, and one has an adjustable scale. Basically, the surveyor uses both in the same way, with the exception that the fixed scale cannot be adjusted to yield a 1:1 ratio when tracing areas.

Operation

The planimeter (figure 4-6) touches the paper at four points: the anchor point (B), the tracing point (A), the drum (C), and the support wheel (G). The adjustable tracing $\operatorname{arm}(\mathrm{E})$ is graduated to permit adjustment to the scale of the plotted figure. This adjustment provides a direct ratio between the area traced by the tracing point and the revolutions of the roller. The scale screws, Fl, F2, and F3, are used to accomplish the proper adjustment of the tracing arm scale. Proper scale settings are provided with each instrument. If the scale setting provided yields an area that is too large, the scale reading must be increased and vice versa.

As the planimeter encircles the area to be measured, the drum (C) revolves and records the answer in tens and hundreds. A vernier (M) is mounted adjacent to the drum and
enables a single unit (ones) reading. The disk (D) is attached to the drum by a worm gear, counting the number of drum revolutions and giving the thousands reading. The surveyor must first read the disk for thousands, then the drum for hundreds and tens, and finally, the vernier for single units (ones).

Figure 4-6. Polar planimeter

Procedures

The following are rules for using a planimeter,

- Always measure cut and fill areas separately.
- Check the accuracy of the planimeter as a measuring device to guard against errors due to temperature changes and other noncompensating factors. A simple method of testing its consistency of operation is to trace an area of 1 square inch with the arm set for a 1:1 ratio. The disk, drum, and vernier combined should read 1.000 for this area.
- Before measuring a specific area, determine the scale of the plot and set the adjustable arm of the planimeter according to the chart in the planimeter case. Check the setting by carefully tracing a known area, such as five large squares on the cross-section paper, and verifying the reading on the disk, drum, and vernier. If the reading is inconsistent with the known area, readjust the arm settings until a satisfactory reading is obtained.
- To measure an area, set the anchor point of the adjusted planimeter at a convenient
position outside the plotted area; place the tracing point on a selected point on the perimeter of the cross section; take an initial reading from the disk, drum, and vernier; continue tracing the perimeter clockwise, keeping the tracing point carefully on the line being followed; and when the tracing point closes on the initial point, again take a reading from the disk, drum, and vernier. The difference between the initial reading and the final reading gives a value proportional to the area being traced.
- Make two independent measurements of the area to insure accurate results. Make the second measurement with the tracing point placed at a point on the opposite side of the first measurement. This procedure gives two compensating readings. The mean of these readings is more accurate than either one individually.
- To measure plotted areas larger than the capacity of the planimeter, divide the areas into sections and measure each separately.

Section III. EARTH AND ROCK EXCAVATION

CLASSES OF EXCAVATED MATERIAL

Excavated material is usually classified as common excavation, loose rock, and solid rock. Although classifying excavation material is not a survey function, the surveyor must differentiate among the different types so excavation records will match the construction work. When performing surveys to determine quantities of excavated materials, the surveyor must record common excavation, loose-rock excavation, and solidrock excavation data separately in the field notes.

Common excavation involves the moving of earth or of earth with detached boulders less than one-half cubic yard in volume. Looserock excavation involves the moving of consolidated materials which have been loosened without blasting with picks, bars, or simple air and mechanical devices. Solidrock excavation involves the moving of rock from solid beds or the breaking up of boulders measuring 1 cubic yard or more by means of explosives.

BORROW PITS

When there is an imbalance in the volume of cuts and fills in construction projects, it is often necessary to borrow the required fill dirt from borrow pits outside the construction limits but near the fill site. Any time the haul distance between the last available dirt and the fill site becomes too far, it is cheaper to establish a borrow pit.

Under some circumstances, it is not necessary to survey borrow pits. However, it is often necessary to buy the fill dirt. The surveyor must determine how much earth was removed from the borrow pit. This can be done by establishing a grid over the area to be excavated. The grid can beat any convenient interval (for example, $10-$ - $25-$, $50-$, or 100 -foot squares).

Once the grid is staked, the surveyor can determine the elevation of each grid corner by leveling. The volume of earth that has
been removed can be computed at any time by reestablishing the grid corners and determining their new elevation. The surveyor does this by subtracting the average elevation of the grid corners after excavation from the average elevation of the same grid corners before excavation and multiplying the difference by the number of square feet in the grid square.

When laying out the grid, the surveyor must lay out two baselines parallel to two adjacent sides of the grid for use in reestablishing the grid. The surveyor should place them far enough outside the area of excavation to avoid destruction but close enough to be convenient. (See figure 4-7.)

The surveyor should treat waste areas or dumps where excess material is deposited in the same manner as borrow pits, with the exception that the volume to be measured is the volume deposited, not excavated.

Figure 4-7. Typical grid layout for borrow pits

CHAPTER 5

BRIDGE SURVEYING

Section I. LOCATION

SURVEYS

Bridge surveying is necessary to locate a site, obtain information for design, and furnish lines and grades for construction. A reconnaissance survey is made at all possible sites. A preliminary survey is made at the best site to establish horizontal and vertical control and to obtain information for the bridge design and construction planning. A location survey is made to lay out the bridge according to the bridge plans. During the actual construction, the surveyor establishes any additional lines and grades required by the construction foreman.

The accuracy of measurements and the number and type of survey markers vary with the degree of precision demanded and the type of construction. Variations may range from hand-level and sketchboard work for a tactical bridge to precise measurements for a prefabricated steel bridge.

RECONNAISSANCE

Tentative bridge sites are selected by reconnaissance and the more promising ones are reconnoitered in detail. The selection of a
bridge site is governed by both tactical and technical considerations. Tactical requirements fix the general area for the bridge site. Technical requirements fix the exact location and may sometimes eliminate sites that are tactically acceptable. For permanent construction, technical considerations govern the bridge location.

Access Roads

Maps or prepared overlays show existing roads and the distances of railheads from the bridge site. Descriptive symbols indicate the width, condition, and types of roads. The surveyor draws sketches of approach roads to be constructed on overlays and includes them in the reconnaissance report.

Bridge Length

The surveyor determines the length of the bridge crossing to estimate the materials required for construction. Depending on the distance and equipment available, the surveyor measures this distance with a tape, an electronic measuring device, or by stadia method.

Banks

The surveyor reports on the character and shape of the riverbanks. This includes the amount and type of vegetation; the slope, height, and composition of the banks; and pertinent dimensions of any natural dikes. The surveyor selects tentative abutment positions and measures the size and location of any usable abutments or piers for possible use in the proposed construction.

Character of the Flow

The surveyor determines stream velocity by timing a floating object over a measured course. High-water levels are determined by noting drift and marks on vegetation or piers, questioning local inhabitants, and consulting tide tables and local flood records.

Character of the River Bottom

The surveyor observes the character of the river bottom for each site and reports information on the design of intermediate supports. If a floating bridge is to be constructed, the surveyor determines the character of the river bottom so the holding power of anchors can be estimated.

Profile

The surveyor profiles the streambed or gap to facilitate the design of intermediate supports. The profile interval is measured by a tape or cable stretched horizontally across the stream or gap or by the instrument-stadia method. Vertical measurements for the profile are referenced to the horizontal tape, cable, or water surface. For floating bridges, profiles are required only for setting trestles near the shores.

Local Materials

The surveyor estimates and records quantities of local materials such as standing timber, sand and gravel beds, and available cement, water, and lumber.

SOUNDINGS

A survey is made to determine the relief of the bottom of the stream along the centerline and along lines on each side of the centerline. The
surveyor must make soundings and determine the depth of each sounding in relation to the datum used for vertical control.

Location

The location of each sounding is referenced to control stations onshore. The design engineer specifies the distance from the centerline and intervals between soundings. Unless otherwise specified, intervals between soundings are 25 feet for a fairly uniform streambed and 10 feet for an irregular streambed. For more accurate location of soundings, the surveyor should use the intersection method. This would include setting instruments on the ends of a baseline on shore and reading simultaneous angles.

Procedures

Figure 5-1 shows one method of taking soundings. The instrument is set up over C and sighted on F . A sounding boat travels on the range line, CF , from the far shore toward the near shore. The instrumentman signals the sounding crew until they are online at the proper distance as measured by tape or stadia. The sounding crew proceeds along the centerline, CF, taking readings at the specified intervals. In shallow water, direct rod readings can be taken for profile elevations by setting the instrument near the river's edge. In deeper rivers, the depth of water is measured directly from the boat, using the most suitable measuring device.
The surveyor records the data obtained by the sounding and ground crews in order to provide a complete set of profile notes for the construction design. To establish profiles on each side of the centerline, stakes are set at a specified distance from the centerline at B, D, E , and G. Using the same procedure as for the centerline soundings, the surveyor sets up the instrument at B , then at D , and sights on E and G, respectively.

FOUNDATION INVESTIGATION

Data on foundation investigations serve as the basis for determining bearing capacities
and substructure design. Subsurface investigations are made by borings, test pits, trenches, and field tests. The surveyor must often make measurements incident to these investigations. The surveyor's duties include
referencing boreholes and test pits to nearby instrument stations and recording elevations of strata encountered at the various sites. These data are used in preparing a profile illustrating subsurface conditions.

Figure 5-1. Taking soundings

Section II. BRIDGE SITE LAYOUT

ABUTMENTS

Construction plans show whether the abutments are pile-bent or crib-bent. The surveyor checks the layout after excavation and before any concrete is poured. The surveyor must also check abutment elevations and, in the case of concrete, establish lines for setting forms. Care must be taken to stake abutments according to the construction plans. The distance between abutments must
be within steel fabrication limits, especially for prefabricated sections. The surveyor then ties abutment stakes to a horizontal control system.

The survey procedure for setting an abutment at right angles to the bridge centerline is illustrated in figure 5-2. The foundation, $A B C D$, is shown in the plan. $A B$ is the face,

Figure 5-2. Staking an abutment
and points J and K are established near the site on the centerline of the bridge. The staking is done as follows:
(1) Set the instrument at point H (station $40+97.5$). Sight on point J. Invert the instrument and use a tape to locate point F.
(2) Turn 90-degree angles and use a tape to locate points C and D .
(3) Move the instrument to point F (station $41+37.5$), sight on H , and turn 90 -degree angles to locate points A and B. Locate points E and G in line with points A and B, respectively, and use as horizontal control points.

WING WALLS

The procedure for laying out wing walls is merely an extension of the layout of an abutment. The surveyor sets the instrument at B (figure 5-3), sights on G, and turns the wing angle. Points L and M are located at any convenient distance along this line.

The surveyor sets the instrument at A and locates points N and O . Since points A and B may be lost or damaged during construction, the surveyor locates two points (L and M ; N and O) on the line of sight of the front of each wing wall. To relocate point A , the instrument is set at point O and sighted through point N . The surveyor may also locate point A by setting the instrument up on N , sighting on O , and inverting.

Figure 5-3. Staking wing walls

PIERS

After the centerline of the bridge is established, the surveyor locates the piers by taping. If taping is impractical, they can be located by triangulation. The surveyor sets stakes establishing the centerline (C and E)
on each side of theriver. The surveyor lays out CD and EF approximately at right angles to the centerline as shown in figure 5-4. For well-proportioned triangles, the length of the baselines should equal at least one-half CE.

Figure 5-4. Locating piers

To locate piers at A and B, the surveyor should follow these steps.
(1)Establish and carefully reference baselines CD and EF.
(2)Measure the length of each baseline commensurate with the required precision of line CE.
(3) Measure all angles of the triangles CDE and EFC.
(4) Compute the distance CE from the triangle CDE and check it against the same distance computed from the triangle EFC. The difference in computed length must be within the prescribed limits of error.
(5) Compute angles BDC, $\mathrm{ADC}, \mathrm{BFE}$, and AFE. (Since A and B are located by the construction plans, it is possible to determine their distance from C and E .)
(6) Draw a triangulation diagram, showing computed angles and distances and measured angles and distances.
(7) Turn computed angles BDC, ADC, BFE, and AFE.
(8)Set targets DA and DB on the far shore and FB and FA on the near shore, so that the intersecting lines can be reestablished without turning angles. Carefully reference these points.
(9) Use two instruments to position crib piers. They will occupy two points such as F and D simultaneously. The intersection of sights FA and DA locates the pier A.

PILES

The surveyor positions piles, records piledriving data, and marks piles for cutoff as specified by the construction plans.

The difference

 in computed length must be within the prescribed limits of error.Figure 5-5 shows points A and B established as a reference line 10 feet from the centerline of the bridge. A wire rope is stretched between these points with a piece of tape or a cable clip marking each pile-bent position, such as C and D . The surveyor can locate the upstream pile, pile number 1, by measuring the offset (4 feet) from the line AB at C . A template, designed to space the piles properly (3 feet in the figure) and nailed to pile number 1 after the pile is driven, is then floated into position. The surveyor positions the rest of the piles using the template.

If it is impractical to stretch a cable to the far shore, the surveyor sets up an instrument at some convenient distance from the centerline of the bridge and positions the template by sighting on a mark located the same distance from the centerline of the template. The surveyor determines the distance of the template from the shore, either by angle measuring or taping. During driving, the
surveyor must keep a complete record of the following:

- Location and number of piles.
- Dimensions.
- Kind of wood.
- Total penetration.
- Average drop of hammer.
- Average penetration under last five blows.
- Penetration under last blow.
- Amount of cutoff.

Elevations are marked on the two end piles. Two 3- by 12-inch planks are nailed to guide the saw in cutting piles to the specified height.

Figure 5-5. Positioning piles

CHAPTER 6

SITE LAYOUT

Section I. BUILDING LAYOUT

OBJECTIVES

The objectives of surveying for building construction are to lay out the proposed structure according to prepared plans and to mark the controlling points of the structure in the manner that is most useful to the construction forces. This marking consists of indicating the corners of the building and other horizontal and vertical positions by means of stakes, batter boards with string lines, drill holes, cut-and-fill notations, and similar conventional methods.

The actual layout of the building is usually preceded by some form of reconnaissance and location survey. The following procedures are typical of major building projects:

- Performing reconnaissance (aerial, map, and ground).
- Selecting site (paper and instrument).
- Establishing control (horizontal and vertical).
- Taking topography (plane table or transit stadia).

ORIENTATION

The building and its foundation are positioned according to the controlling dimensions and references appearing on prepared plans. The dimensions and references include the overall length and width of the structure, distances to road centerlines and to other structures, measurements within the structure itself, and miscellaneous determinations concerning the approaches and rights-of-way.

LAYOUT OF A SIMPLE BUILDING

The plans for construction of a building give the location and elevation of the work relative to existing utilities and survey control marks. The dimensions of the building are part of the necessary data for establishing line and grade. Figure 6-1 illustrates atypical building layout using the following steps.
(1) Establish baseline AB and locate CD by measurement.
(2)At point C, turn 90 degrees from B and locate corner stakes E and F by measurement.
(3) Locate points H and G from point D in the same way.
(4) Check diagonals (EH and FG) by the formula $\mathrm{c}=\sqrt{\mathbf{a}^{2}}+\mathbf{b}^{2}$, (where c is the diagonal and a and b, the two sides).
(5) Install batter boards.
(6) Establish line and grade.

BATTER BOARDS

The surveyor locates the corners of the building and determines the elevation of its foundation by carrying forward elevations from a benchmark, or other point of known
elevation, to the foundation. To mark the general location, the surveyor sets stakes or slats. These will guide the initial excavation and rough grading. However, the stakes will
be disturbed or destroyed during this work, and somemore suitable marks must be placed to continue the construction. These suitable marks are called batter boards. The surveyor uses these temporary devices to mark the outline and grade of the structure and any special construction inside or outside.

Placement

Batter boards of two 2- by 4 -inch stakes driven into the ground and a crosspiece of 1- by 6 -inch lumber naled to each stake. The surveyor drives the stakes about 3 to 4 feet away from the building line so they will not be disturbed by the construction but will be far enough apart to straddle the line to be marked. Note that in figure 6-2 only three stakes, one of them being a common post for two directions, are driven on outside corners. The length of the stakes is determined by the required gradeline. They must be long enough to accept the 1 - by 6 -inch crosspiece to mark the grade. The surveyor cuts the 1 - by 6 -inch crosspiece long enough to join both stakes and nails it firmly to them after the grade has ben established. The top of the crosspiece becomes the mark fromwhich the grade will be measured.

Use of Instrument. The surveyor sets all batter boards for one structure to the same grade or level line. An instrument is used to locate the building lines and mark them on the top edge of the crosspiece. A nail is driven at each of these marked points. A cord stretched over the top edge of two batter boards and held against the nails defines the building line and grade elevation.
Use of Cord. Sometimes, an instrument is not available for marking the building line on the batter boards. If the corner stakes have not been disturbed, the surveyor can transfer the building line to the batter boards by stretching a cord over the batter boards and using plumb bobs held over the corner stakes. The surveyor moves the cord on each batter board until it just touches both plumb bob strings, marks the position of the cords, and drives in the nails.

Procedures

The surveyor sets and marks the batter boards as follows:
(1) After the corner stakes are laid out, drive 2 - by 4 -inch stakes 3 to 4 feet outside of

Figure 6-2. Batter boards
each corner. These are selected to bring all crosspieces to the same elevation.
(2) The surveyor marks these stakes at the grade of the top of the foundation or at some whole number of inches or feet above or below the top of the foundation. Use a level to mark the same grade or elevation on all stakes.
(3) Nail 1-by 6-inch boards to the stakes to the top edge of the boards and flush with the grade marks. Mark the distance in crayon on these boards.
(4) Locate the prolongation of the building lines on the batter boards by using an instrument or a line and plumb bob.
(5) Drive nails into the top edges of the batter boards to mark the building line.

INTERIOR TRANSFER OF LINE AND GRADE

Occasionally, it is necessary to transfer lines and grades from outside to inside a building and to the upper stories for establishing wall faces, floor levels, and columns or for setting machinery precisely. The surveyor does this by traversing and leveling.

Location

The surveyor locates instrument stations outside of the building to establish a line that, when extended, will intersect the building at a window or doorway. The instrument is set
on the station farthest from the building and sighted on the point nearest the building. The surveyor transfers the line to the building by sighting the instrument on a plumb bob held in an upper-story window.

From this point, the line is extended in any direction inside the building by setting up on the point and using the outside stations as a backsight. The line is prolonged by double centering. Because of the short sights used, the surveyor may accurately set an angle that is to be turned to clear an obstruction and then measure by repetition.

Direct Leveling

To transfer vertical control into a building, the surveyor uses direct leveling, if possible. For elevation transfer to an upper story, a steel tape is suspended with a weight attached to the lower or zero end. To insure accuracy, the weight should approximately equal the normal tension of the fully supported tape minus one half of the weight of the suspended portion of the tape. A level is set up on the first floor, and a reading is taken on the suspended tape.

Another reading is taken on the tape with a level set on the upper floor. This gives data from which the HI of the instrument on the upper floor are computed. A rod is now held on some point on the upper floor to be used as a benchmark and its elevation determined. The surveyor may also establish elevations on the second floor by using the rod upside down (often called an inverted rod) and marking the elevation on a wall.

Section II. UTILITIES LAYOUT

DRAINAGE

Utilities drainage refers to the sewer systems for surface water and liquid waste. The design and location of a drainage or storm sewer system will depend upon the size and topography of the area to be drained, the intensity of rainfall expected, the runoff characteristics of the area, and the location
of the disposal point. The area to be drained includes the installation and any area around it that will drain into the installation. The intensity of the rainfall in inches per hour is based on records of past storms. The runoff characteristics are determined by the type of soil and ground cover.

DESIGN AND LOCATION

Using the factors mentioned and the best available topographic map of the area, the surveyor designs and locates the sewer lines on paper. Once the paper location is accomplished, the centerline of the ditch is staked and profile levels run. The profile and grade lines are plotted and cut stakes set.

After the trench is dug, batter boards are set for the alignment of pipes and placement of manholes or drop inlets. The surveyor usually places batter boards for sewer alignment at intervals of 10 to 25 feet and sets them on edge across the trench (figure 6-3). Then the surveyor determines the interval between batter boards, the station number, and the elevation of the sewer grade at each batter board.

The term sewer grade is interchangeable with such other terms as invert grade, pipe grade, flow line, and grade line elevation. They all mean the same thing, the elevation of the low point on the inside circumference of the pipe. All sewer lines are designed with this elevation as the controlling factor. The surveyor must set all grade marks
on the batter boards between two successive manholes at the same distance above the invert grade.

Battens

The surveyor nails battens (small pieces of wood) to the batter boards to indicate sewer alignment. All battens are set vertically on the same side of the batter boards, with the same edges directly over the centerline of the sewer. As work progresses, the surveyor must check the alignment of these battens frequently. This is done by sighting past the edges marking the centerline. Any batten that has been moved or disturbed will be visible immediately.

Sighting Cords

The surveyor uses a sighting cord stretched parallel to the centerline of the sewer at a uniform distance above the invert grade to transfer line and grade into the trench. After computing the invert elevation, the surveyor adds an even number of feet to establish the elevation of the cord at each batter board. This position is marked on the centerline edge of each batten by a nail. The sighting

Figure 6-3. Sewer alignment
cord is fastened to the battens at these nails and this establishes the alignment of the sewer. The centerline is directly below the cord, and the sewer invert grade is at the selected distance below the cord.

Grade Transfer

To transfer the grade, usually in feet or feet and inches, from the sighting cord to the pipe, the surveyor uses a rod or stick called a grade pole, with a mark at a distance from the foot
piece equal to the distance between the sighting cord and the invert grade (figure 6
3). The foot piece is placed on the invert of the pipe, and the rod plumb is held. The pipe end is then raised or lowered until the mark on the grade pole is on a horizontal line with the cord. A plumb line is held lightly against the cord and the pipe shifted sideways until its crown is directly below the point of the plumb bob. The grade pole is again placed in position, held plumb, and its mark checked against the cord.

CHAPTER 7

TRAVERSE
Section I. SELECTION OF TRAVERSE DEFINITION

A traverse is a series of straight lines called traverse legs. The surveyor uses them to connect a series of selected points called traverse stations (TS). The surveyor makes distance and angle measurements and uses them to compute the relative positions of the traverse stations on some system of coordinates.

STARTING CONTROL

Since the purpose of a traverse is to locate points relative to each other on a common grid, the surveyor needs certain elements of starting data, such as the coordinates of a starting point and an azimuth to an azimuth mark. There are several ways in which the starting data can be obtained, and the surveyor should make an effort to use the best data available to begin a traverse. The different variations in starting control are grouped into several general categories.

Known Control Available

Survey control is available in the form of existing stations with the station data published in a trigonometric list, or higher
headquarters may establish the station and provide the station data. The surveyor obtains the azimuth to an azimuth mark (starting direction) by referring to a trigonometric list or computing from known coordinates.

Maps Available

When survey control is not available in the area, the surveyor must assume the coordinate of the starting station. The assumed data approximates the correct coordinate as closely as possible to facilitate operations. When a map of the area is available, the approximate coordinate of the starting station is scaled from the map. (For survey purposes, starting data scaled from a map are considered to be assumed data.) The surveyor determines the starting direction by scaling it from the map.

No Maps Available

When neither survey control nor maps are available, the coordinate of the starting point is assumed. The surveyor determines the starting direction by the most accurate means available.

TYPES OF TRAVERSE

Construction surveying makes use of two basic types of traverse-open traverse and closed traverse.

Open Traverse

An open traverse (figure 7-1) originates at a starting station, proceeds to its destination, and ends at a station whose relative position is not previously known. The open traverse is the least desirable type of traverse because it provides no check on fieldwork or starting data. For this reason, the planning of a traverse always provides for closure of the traverse. Traverses are closed in all cases where time permits.

Closed Traverse

A closed traverse starts at a point and ends at the same point or at a point whose relative position is known. The surveyor adjusts the measurements by computations to minimize the effect of accidental errors made in the measurements. Large errors are corrected.

Traverse closed on starting point. A traverse which starts at a given point, proceeds to its destination, and returns to the starting point without crossing itself in the process is referred to as a loop traverse figure

7-2). The surveyor uses this type of traverse to provide control of a tract or parcel boundary, and data for the area computation within the boundary. This type of traverse is also used if there is little or no existing control in the area and only the relative position of the points is required.

A loop traverse starts and ends on a station of assumed coordinates and azimuth without affecting the computations, area, or relative position of the stations. If, however, the coordinates must be tied to an existing grid system, the traverse starts from a known station and azimuth on that system. While the loop traverse provides some check upon the fieldwork and computations, it does not provide for a check of starting data or insure detection of all the systematic errors that may occur in the survey.
Traverse closed on second known point. A traverse closed on a second known point begins at a point of known coordinates, moves through the required point(s), and terminates at a second point of known coordinates. The surveyor prefers this type of traverse because it provides a check on the fieldwork, computations, and starting data. It also provides a basis for comparison to determine the overall accuracy of the work.

Figure 7-1. An open traverse

Figure 7-2. A loop traverse

Section II. FIELD SURVEY

FIELDWORK

In a traverse, three stations are considered to be of immediate significance. Surveyors refer to these stations as the rear station, the occupied station, and the forward station. The rear station is the station from which the surveyors performing the traverse have just moved or a point to which the azimuth is known. The occupied station is the station at which the party is located and over which the instrument is set. The immediate destination of the party is the forward station or the next station in succession.

Horizontal Angles

Always measure horizontal angles at the occupied station by sighting the instrument at the rear station and measuring the clockwise angles to the forward station. To
measure horizontal angles, make instrument pointings to the lowest visible point of the target which marks the rear and forward stations.

Distance

Measure the distance in a straight line between the occupied station and the forward station. Use horizontal taping procedures or electronic distance measuring equipment.

TRAVERSE STATIONS

The surveyor selects sites for traverse stations as the traverse progresses. The surveyor locates the stations in such a way that at any one station both the rear and forward stations are visible.

Selection of Stations

If the distance is measured with tape, the line between stations must be free of obstacles for the taping team. The surveyor should keep the number of stations in a traverse to a minimum to reduce the accumulation of instrumental errors and the amount of computing required. Short traverse legs require the establishment and use of a greater number of stations and may cause excessive errors in azimuth because small errors in centering the instrument, in station marking equipment, and in instrument pointings are magnified and absorbed in the azimuth closure as errors in angle measurement.

Station Markers

Traverse station markers are usually 2-by 2 -inch wooden stakes, 6 inches or more in length. The surveyor drives these stakes, called hubs, flush with the ground. The center of the top of the hub is marked with a surveyor's tack or with an X to designate the exact point of reference for angular and linear measurements.

To assist in recovering the station, the surveyor drives a reference (witness) stake into the ground so that it slopes toward the station. The surveyor must write the identification of the station on the reference stake with a lumber crayon or china marking pencil or on a tag attached to the stake. Signal cloth may also be tied to the reference stake to further assist in identifying or recovering the station.

Station Signals

A signal must be erected over survey stations to provide a sighting point for the instrument operator and to serve as a reference for tape alignment by the taping team. The most commonly used signal is the range pole.

When measuring angles, the surveyor places the tapered point of the range pole on the station mark and uses a rod level to make the pole vertical for observations. The surveyor should check the verticality of the pole by verifying that the bubble remains centered at
other points on the range pole. The range pole is maintained in a vertical position throughout the observation period either by use of a range pole tripod or by someone holding the pole. To prevent the measurement of angles to the wrong point, the surveyor places the range pole in a vertical position only when it is being used to mark a survey station.

ORGANIZATION OF TRAVERSE PARTY

The number of personnel available to perform survey operations depends on the unit's Table of Organization and Equipment (TOE). The organization of these people into a traverse party and the duties assigned to each member will depend on the unit's Standing Operating Procedure (SOP). The organization and duties of traverse party members are based on the functional requirements of the traverse.

Chief of the Party

The chief of the party selects and marks the locations for the traverse stations and supervises the work of the other members of the party. The chief of the party also assists in the reconnaissance and planning of the survey.

Instrument Operator

The instrument operator measures the horizontal angles at each traverse station.

Recorder

The recorder keeps the field notes (see appendix B) for the party in a field notebook, and records the angles measured by the instrument operator, the distances measured by the tapeman, and all other data pertaining to the survey. The recorder is usually the party member designated to check the taped distances by pacing between traverse stations.

Tapemen

Two tapemen measure the distance from one traverse station to the next.

Rodman

The rodman assists the chief of the party in marking the traverse stations, removes the target from the rear station when signaled by the instrument operator, and moves the target forward to the next traverse station.

Variations

The number of party members maybe reduced by combining the positions of party chief, instrument operator, and recorder. It is possible that one of the tapemen may double as a rodman, but it is best to have two tapemen and a separate rodman.

Section III. COMPUTATIONS

AZIMUTH COMPUTATION

The azimuth of a line is defined as the horizontal angle, measured clockwise, from a base direction to the line in question. Depending upon the starting data and the desired results, the base direction used will be grid north. In extreme circumstances, the starting azimuth may even be a magnetic azimuth. In order for a traverse to be computed, the surveyor determines an azimuth for each leg of the traverse figure 7-2).

The azimuth for each succeeding leg of the traverse is determined by adding the value of the measured angle at the occupied station to the azimuth from the occupied station to the rear station. The example which follows illustrates this procedure. It should be noted that on occupation of each successive station, the first step is to compute the back azimuth of the preceding traverse leg (the azimuth from the occupied station to the rear station).

It is possible to reduce the number of personnel in a traverse party, but there should be two tapemen and a separate rodman.
Example
Given:
Azimuth from station A to azimuth mark (Az) $120^{\circ} 00^{\prime}$
Angle azimuth mark-A-B $310^{\circ} 15^{\prime}$
Angle A-B-C $270^{\circ} 57^{\prime}$
Angle B-C-A $313^{\circ} 28^{\prime}$
Angle C-A-azimuth mark 5" 19
Required:
All leg azimuths
Solution
At station A
Az from A to Az mark $120^{\circ} 00^{\prime}$
(+) Angle Az mark-A-B $310^{\circ} 15^{\prime}$
$430^{\circ} 15^{\prime}$
(-) Full circle $360^{\circ} 00^{\prime}$
Az line A-B $70^{\circ} 15^{\prime}$
${ }^{(+)} 180$ to determine back Az $180^{\circ} 00^{\prime}$
Back Az line A-B $250^{\circ} 15^{\prime}$
(+) Angle A-B-C $270^{\circ} 57^{\prime}$
$521^{\circ} 12^{\prime}$
(-) Full circle $360^{\circ} 00^{\prime}$
Az B-C $161^{\circ} 12^{\prime}$
(+) 180 to determine back Az $180^{\circ} 00^{\prime}$
Back Az line B-C $341^{\circ} 12^{\prime}$
(+) Angle B-C-A $313^{\circ} 28^{\prime}$$654^{\circ} 40^{\prime}$
(-) Full circle $360^{\circ} 00^{\prime}$
Az line C-A $294^{\circ} 40^{\prime}$
(-) 180 to determine back Az $180^{\circ} 00^{\prime}$
Back Az line C-A $114^{\circ} 40^{\prime}$
(+) Angle C-A-Az mark $5^{\circ} 19^{\prime}$
AZ line A-Az mark $119^{\circ} 59^{\prime}$
(note error)

AZIMUTH ADJUSTMENT

The surveyor must determine the need for adjustment before beginning final coordinate computations. If the angular error of closure falls within computed allowable error, the surveyor may adjust the azimuths of the traverse.

Allowable Angular Error (AE)

The allowable angular error is determined by the formula $A E=1^{\prime} \sqrt{N}$, or $20^{\prime \prime}$ per station. whichever is less, where N is the number of traverse stations. If azimuth error does not fall within allowable error, the surveyor must reobserve the station angles of the traverse in the field.

In the example given, N equals 3 .

$$
\begin{aligned}
& \mathrm{AE}=1^{\prime} \sqrt{3}=1.73^{\prime} \text { or } 104^{\prime \prime} \\
& \mathrm{AE}=20^{\prime \prime} \mathrm{x} 3=60^{\prime \prime}
\end{aligned}
$$

Therefore, 60 seconds is the allowable error.

Azimuth Corrections

Prior to determining a correction, the surveyor computes the actual error. The azimuth error is obtained by subtracting the computed closing azimuth from the known closing azimuth. This subtraction provides the angular error with the appropriate sign. By reversing this sign, the azimuth correction with the appropriate sign is obtained. For example, the azimuth from point A to an azimuth mark is $120^{\circ} 00^{\prime}$. The closing azimuth of a traverse to the same azimuth mark is determined to be $119^{\circ} 59$ '. This falls within allowable limits, so the surveyor may compute the error and correction as follows:

Azimuth error	$=$ computed azimuth - known azimuth
Azimuth correction	$=119^{\circ} 59^{\prime}-120^{\circ} 00^{\prime}=-00^{\circ} 01$
	$=+00^{\circ} 01^{\prime}$

Application of Azimuth Corrections

Since traverse adjustment is based on the assumption that errors present have accumulated gradually and systematically throughout the traverse, the azimuth correction is applied accordingly. The correction is distributed equally among the angles of the traverse with any remainder distributed to the larger angles. For example, assume that the traverse for which the azimuth correction was determined consists of three traverse legs and four angles.

Station	Measured Angle
A	$310^{\circ} 15$,
B	$270^{\circ} 57$
c	$313^{\circ} 28^{\prime}$
A (closing)	$5^{\circ} 19$

The azimuth correction is divided by the total number of angles. (In this case, $+01^{\prime} \div 4=15$ " per angle.) Each of the four angles is increased by 15 seconds.
Station Measured Azimuth Adjusted Angle Correction Angle

A	$310^{\circ} 15^{\prime}$,	$+15^{\prime \prime}$	$310^{\circ} 15^{\prime} 155^{\prime \prime}$
B	$270^{\circ} 57^{\prime}$	$+15^{\prime \prime}$	$270^{\circ} 57^{\prime} 15^{\prime \prime}$
c	$313^{\circ} 28^{\prime}$	$+15^{\prime \prime}$	$313^{\circ} 8^{\prime} 15, "$
A	$5^{\circ} 19^{\prime}$	$+15^{\prime \prime}$	$5^{\circ} 19^{\prime} 15^{\prime \prime}$

Action After Adjustment
After the angles are adjusted, the surveyor computes adjusted azimuth of each leg of the traverse by using the starting azimuth and the adjusted angles at each traverse station. The surveyor should compute the adjusted azimuth throughout the entire traverse and check against the correct azimuth to the closing azimuth mark before beginning any further traverse computations.

AZIMUTH-BEARING ANGLE RELATIONSHIP

Since the functions (sine, cosine, tangent, and so on) of the azimuth and the bearing are numerically the same, the surveyor may use
either one to compute the traverse. The choice of which is to be used will depend upon the computer and the equipment available.

Azimuth and Bearing

If a calculator with angular functions is available, the use of the azimuth would obviously be easier, since it eliminates the need to compute the bearing. If such a calculator is not available and the functions must be determined from tables, it is necessary to compute the bearing angles since the tabulation of functions is normally published for angles of 0 degrees to 90 degrees. The bearing of a line is the acute angle (angle less than 90 degrees) formed by the line in question and the northsouth line through the occupied point. Figure 7-3 illustrates the relationship between the azımuth of a line and its bearing.

Quadrants

The manner in which bearing angles are computed from a given azimuth depends on the quadrant in which the azimuth lies. Figure 7-4 shows the four quadrants and their relationship to each other. When the azimuth is in the first quadrant, O degrees to 90 degrees, the bearing is equal to the azimuth. When the azimuth is in the second quadrant, 90 degrees to 180 degrees, the bearing is equal to 180 degrees minus the azimuth. When the azimuth is in the third quadrant, 180 degrees to 270 degrees, the bearing is equal to the azimuth minus 180 degrees. When the azimuth is in the fourth quadrant, 270 degrees to 360 degrees, the bearing is equal to 360 degrees minus the azimuth.
Since the numerical values of the bearings repeat in each quadrant, the surveyor must label them and indicate into which quadrant they fall. This is done by indicating whether the bearing angle is measured from the north or south line and whether it is east or west of that line. For example, a line with an azimuth of $341^{\circ} 12^{\prime} 30^{\prime \prime}$ falls in the fourth or northwest quadrant and its bearing is $\mathrm{N} 18^{\circ} 47^{\prime} 30^{\prime} \mathrm{W}$.

Figure 7-3. Relationship of azimuth and bearing

Figure 7-4. Determination of a bearing angle

COORDINATE COMPUTATIONS

If the coordinate of a point and the azimuth and distance from that point to a second point are known, the surveyor can compute the coordinate of the second point. In figure $7-5$, the coordinate of station A is known and the coordinate of B is to be determined. The azimuth and distance from station A to B are determined by measuring the horizontal angle from the azimuth mark to station B and the distance from station A to B. The grid casting and northing lines through both stations are shown.

Since the grid is a rectangular system and the casting and northing lines form right angles at the point of intersection, the computation of the difference in northing (side dN) and difference in casting (side dE) employs the
formulas for the computation of a right triangle. The distance from A to B is the hypotenuse of the triangle, and the bearing angle (azimuth) is the known angle. The following formulas are used to compute dN and dE :

$$
\begin{aligned}
& \mathrm{dN}=\operatorname{Cos} \text { Azimuth } \mathrm{x} \text { Distance } \\
& \mathrm{dE}=\text { Sin Azimuth } \mathrm{x} \text { Distance }
\end{aligned}
$$

In figure 7-5, the traverse leg falls in the first (northeast) quadrant since the value of the casting increases as the line goes east, and the value of the northing increases as it goes north. Both the dE and dN are positive and are added to the casting and northing of station A to obtain the coordinate of station B.

Figure 7-5. Requirements for $d N$ and $d E$

If the surveyor uses a calculator with trigonometric functions to compute the traverse, the azimuth is entered directly and the machine provides the correct sign of the function and the dN and dE . If the functions are taken from tables, the computer provides
the sign of the function by inspection. All lines going north have positive dNs; south lines have negative. Lines going east have positive dEs; west lines have negative Figure 7-6 illustrates the relationship of quadrant to sign.

Figure 7-6. Relationship by quadrant and sign

DETERMINATION OF dN AND dE

In figure 7-7 (page 7-13), the azimuth from $\mathrm{A}-\mathrm{B}$ is $70^{\circ} 15,15$ " and the distance is 568.78 .

$$
\begin{aligned}
& \mathrm{dN}=\operatorname{Cos} 70^{\circ} 15^{\prime} 15 " \times 568.78 \\
& \mathrm{dN}=+0.337848 \mathrm{X} 568.78=+192.16 \\
& \mathrm{dE}=\operatorname{Sin} 70^{\circ} 15 \prime 5^{\prime \prime} \times 568.78 \\
& \mathrm{dE}=+0.941200 \mathrm{X} 568.78=+535.34
\end{aligned}
$$

The azimuth from B-C is $161^{\circ} 12^{\prime} 30^{\prime \prime}$ and the distance is 548.74 (note SE quadrant).

$$
\begin{aligned}
& \mathrm{dN}=\operatorname{Cos} 161^{\circ} 12^{\prime} 30 \prime \times 548.74 \\
& \mathrm{dN}=-0.946696 \mathrm{X} 548.74=-519.49 \\
& \mathrm{dE}=\operatorname{Sin} 161^{\circ} 12,30^{\prime \prime} \times 548.74 \\
& \mathrm{dE}=+0.322128 \mathrm{X} 548.74=+176.76
\end{aligned}
$$

The azimuth from C-A is $294^{\circ} 40^{\prime} 45^{\prime \prime}$, and the distance is 783.74 (note NW quadrant).

$$
\begin{aligned}
& \mathrm{dN}=\operatorname{Cos} 294^{\circ} 40^{\prime} 45^{\prime \prime} \times \mathrm{X} 783.74 \\
& \mathrm{dN}=0.417537 \mathrm{X} 783.74=+327.24 \\
& \mathrm{dE}= \operatorname{Sin} 294^{\circ} 40^{\prime} 45^{\prime} \times 773.74 \\
& \mathrm{dE}=-0.908660 \mathrm{X} 783.74=-712.15 \\
& \text { ACCURACY AND } \\
& \text { SPECIFICATIONS }
\end{aligned}
$$

The overall accuracy of a traverse depends on the equipment and methods used in the measurements, the accuracy achieved, and the accuracy of the starting and closing data.

An accuracy ratio of 1:5,000 is normally sought in construction surveying. In obtaining horizontal distances, an accuracy of at least 0.02 foot per 100 feet must be obtained. When using a one-minute instrument, the surveyor turns the horizontal angles once in each position, namely, one direct and one indirect, with angular closure of 20 seconds per station or 1 ' $\sqrt{\text { number of stations. }}$ whichever is less.

Linear Error

To determine the acceptability of a traverse, the surveyor must compute the linear error of closure and the allowable error or the accuracy ratio or both. The first step in either case is to determine the linear error in dN and dE . In the case of a loop traverse, the algebraic sum of the dNs should equal zero. Any discrepancy is the linear error in dN . The same is true for dEs.

Linear Error dN $(\mathrm{eN})=-0.09$
Linear Error dE $(\mathrm{eE})=-0.05$

The surveyor computes the linear error of closure (eL) using the Pythagorean theorum.

$$
\begin{aligned}
\text { Linear Error }(\mathrm{eL}) & =\sqrt{(\mathrm{eN})^{2}+(\mathrm{eE})^{2}} \\
\mathrm{eL} & =\sqrt{(-0.09)^{2}+(-0.05)^{2}} \\
\mathrm{eL} & =\sqrt{0.0106}=0.1029
\end{aligned}
$$

Allowable Error

The surveyor then computes the allowable error (AE) using the appropriate accuracy ratio $(1 / 5,000$ or $1 / 3,000)$ and the total length of the traverse.

$$
\mathrm{AE}=\frac{1 \times \text { Length of Traverse }}{5,000}
$$

$$
\mathrm{AE}=\frac{1 \times 1901.26}{5,000}=0.3802
$$

Compare this to the linear error of closure. If the AE is greater than the eL, the traverse is good and can be adjusted. If it is not good, it must be rerun.

Ratio of Accuracy

The ratio of accuracy provides a method of determining the traverse accuracy and comparing it to established standards. The ratio of accuracy is the ratio of the eL to the total length of the traverse, after it is reduced to a common ratio and rounded down.
$\frac{\mathrm{eL}}{\text { Total Length }}=\frac{0.1029}{1,901.26}=\frac{0.1029 \div 0.1029}{1,901.26 \div 0.1029}$

$$
=\frac{1}{18,476.77} \text { or } \frac{1}{18,000}
$$

If the accuracy ratio does not fall within allowable limits, the traverse must be rerun. It is very possible that the distances as measured are correct and that the error can be attributed to large, compensating angular errors.

COORDINATE ADJUSTMENT

The surveyor makes the adjustment of the traverse using the compass rule. The compass rule says that, for any leg of the traverse, the correction to be given to the dN or dE is to the total correction for dN or dE as the length of the leg is to the total length of the traverse. The total correction for dN or dE is numerically equal to the eN or eE , but with the opposite sign.

Formulas

In figure 7-7, the dN is -0.09 and the dE is -0.05 and the total corrections are +0.09 and +0.05 , respectively. Note the following formulas:
dN Correction per station $=$
Total dN Correction ${ }_{x}$ Distance to Station
Length of Traverse

dE Correction per station $=$

Total dE Correction x Distance to Station Length of Traverse

For the first leg in the traverse in figure 7-7, the corrections are computed as follows:

$$
\mathrm{dN} \text { Correction }=\frac{+0.09}{1,901.26} \times 568.78=+0.03
$$

$$
\mathrm{dE} \text { Correction }=\frac{+0.05}{1,901.26} \times 568.78=+0.01
$$

Loop Traverse

When adjusting a loop traverse, the surveyor applies the correction to the dNs and dEs prior to computing the coordinates. The total correction must equal the total error. Sometimes, due to round off, the total
correction will not equal the total error. If this happens and the difference is one, reduce the correction to the shortest line or increase the longest line. When the error is greater than one, you may arbitrarily reduce/increase the corrections until the total correction equals the total error.

The coordinate of the previous station $\pm \mathrm{dN} \pm$ correction equals the coordinate of the next station. From figure 7-7, you compute as follows:

Sta A	7,486.79	5,497.53
	7.192 .19	+ 535.35
Sta B	7,678.98	6,032.88

When adjusting a traverse that starts and ends on two different stations, the surveyor computes the coordinates before the error is determined. In this case, the correction per leg is determined in the same manner as shown, but the correction is applied directly to the coordinates. The correction to be applied after the first leg is equal to the correction computed for the first leg. The correction to be applied after the second leg is equal to the correction for the first leg plus the correction computed for the second leg. The correction for the third leg equals the first correction plus the second correction plus the correction computed for the third leg and so on throughout the traverse. The last correction must be equal to the total correction required.

Figure 7-7. Traverse computation of a loop traverse

APPENDIX A TABLES

LIST OF FIGURES AND TABLES

Page
Table A-1. Natural trigonometric functions A-2
A-2. Stadia reduction A-47
A-3. Conversion of minutes into decimals of a degree A-56
A-4. Useful constants and formulas A-58
A-5. Functions of 1° Curves A-64
A-6. Corrections for tangent and external distances A-91
A-7. Deflections and chords for 25-, 50 -, and 100-foot arcs A-93
A-8. Squares, cubes, square roots, and cube roots A-94
A-9. Functions of the 10 -chord spiral A-105
A-10. Subchord corrections (chord definition) A-111
A-11. Subchord corrections (arc definition) A-112
A-12. Temperature conversion table A-113
A-13. Conversion of meters to feet A-114
A-14. Conversion of feet to meters A-118
Figure A-1. Solution of triangles A-58

Table A-1. Natural trigonometric functions

	0°									
	Sin	d. "	Tan	d."	Cot		d."	Cos	d."	
00'	0.000000	4.85	0.000000	4.85				1.000000	00	60^{\prime}
01	000291	4.85	. 000291	4.83	3	437.746674		1.000000	. 00	59
02	. 000582	4.85	. 000582	4.85	1	718.873192		1.000000	. 00	58
03	. 000873	4.85	.000873	4.85	1	145.915295		1.000000	. 02	57
04	.001164	4.83	. 000164	4.83		859.436305		0.999999	. 00	56
05	.001454	4.85	. 001454	4.85		687.548889		. 999999	. 02	55
06	.001745	4.85	.001745	4.85		572.957213		. 999998	. 00	54
07	.002036	4.85	.002036	4.85		491.106003		. 999998	. 02	53
08	. 002327	4.85	. 002327	4.85		429.717571		999997	. 00	52
09	.002618	4.85	.002618	4.85		381.970991		999997	. 02	51
10	0.002909	4.85	0.002909	4.85		343.773708		0.999996	. 02	50
11	. 003200	4.85	. 003200	4.85		312.521367		. 999995	. 02	49
12	.003491	4.85	. 003491	4.85		286.477734		. 999994	. 02	48
13	.003782	4.83	.003782	4.83		264.440799		. 999993	. 02	47
14	. 004072	4.85	. 004072	4.85		245.551983		. 999992	. 03	46
15	.004363	4.85	. 004363	4.85		229.181664		. 999990	. 02	45
16	. 004654	4.85	. 004654	4.85		214.857622		. 999989	. 02	44
17	. 004945	4.85	. 004945	4.85		202.218750		. 999988	. 03	43
18	.005236	4.85	. 005236	4.85		190.984186		999986	. 02	42
19	.005527	4.85	.005527	4.85		180.932198		999985	. 03	41
20	0.005818	4.85	0.005818	4.85		171.885399		0.999983	. 03	40
21	. 006109	4.83	.006109	4.85		163.700191		. 999981	. 02	39
22	.006399	4.85	.006400	4.85		156.259084		. 999980	. 03	38
23	.006690	4.85	.006691	4.83		149.465021		. 999978	. 02	37
24	.006981	4.85	.006981	4.85		143.237122		999976	. 03	36
25	. 007272	4.85	.007272	4.85		137.507447		. 999974	. 05	35
26	.007563	4.85	.007563	4.85		132.218503		. 999971	. 03	34
27	.007854	4.85	.007854	4.85		127.321336		999969	. 03	33
28	. 008145	4.85	. 008145	4.85		122.773955		. 999967	. 05	32
29	.008436	4.85	. 008436	4.85		118.540180		. 999964	. 03	31
30	0.008727	4.83	0.008727	4.85		114.588650		0.999962	. 05	30
31	.009017	4.85	. 009018	4.85		110.892051		. 999959	. 03	29
32	.009308	4.85	.009309	4.85		107.370558		. 999957	. 05	28
33	. 009599	4.85	.009600	4.85		104.170945		. 999954	. 05	27
34	. 009890	4.85	.009891	4.83		101.106902		. 999951	. 05	26
35	.010181	4.85	.010181	4.85		98.217943		999948	. 05	25
36	.010472	4.85	.010472	4.85		95.489475		. 999945	. 05	24
37	.010763	4.85	.010763	4.85		92.908487		. 999942	. 05	23
38	.011054	4.83	.011054	4.85		90.463336		999939	. 05	22
39	.011344	4.85	.011345	4.85		88.143572		999936	. 07	21
40	0.011635	4.85	0.011636	4.85		85.939791		0.999932	. 05	20
41	. 011926	4.85	. 011927	4.85		83.843507		. 999929	. 07	19
42	.012217	4.85	. 012218	4.85		81.847041		999925	. 05	18
43	.012508	4.85	.012509	4.85		79.943430		. 999922	. 07	17
44	.012799	4.85	.012800	4.85		78.126342		. 999918	. 07	16
45	.013090	4.83	.013091	4.85		76.390009		. 999914	. 07	15
46	.013380	4.85	.013382	4.85		74.729165		. 999910	. 05	14
47	.013671	4.85	.013673	4.85		73.138991		. 999907	. 07	13
48	.013962	4.85	.013964	4.83		71.615070		. 999903	. 08	12
49	.014253	4.85	. 014254	4.85		70.153346		. 999898	. 07	11
50	0.014544	4.85	0.014545	4.85		68.750087.		0.999894	. 07	10
51	. 014835	4.85	. 014836	4.85		67.401854		.999890	. 07	09
52	.015126	4.83	.015127	4.85		66.105473		. 999886	. 08	08
53	. 015416	4.85	.015418	4.85		64.858008		. 999881	. 08	07
54	.015707	4.85	.015709	4.85		63.656741		. 999877	. 08	06
55	. 015998	4.85	.016000	4.85		62.499154		. 999872	. 08	05
56	.016289	4.85	.016291	4.85		61.382905		. 999867	. 07	04
57	.016580	4.85	.016582	4.85		60.305820		.999863	. 08	03
58	.016871	4.85	.016873	4.85		59.265872		. 999858	. 08	02
59	.017162	4.83	.017164	4.85		58.261174		.999853	. 08	01
60	0.017452		0.017455			57.289962		0.999848		00
	Cos	d."	Cot	d."		Tan	d."	Sin	d. "	

Table A-1. Natural trigonometric functions (continued)

	Sin	d."	Tan	d. ${ }^{\text {P }}$	Cot	d."	Cos	d."	
00^{\prime}	0.017452	4.85	0.017455	4.85	57.289962		0.999848	. 08	60^{\prime}
01	017743	4.85	. 017746	4.85	56.350590		. 999843	10	59
02	.018034	4.85	018037	4.85	55.441517		. 999837	. 08	58
03	. 018325	4.85	018328	4.85	54.561300		. 999832	. 08	57
04	. 018616	4.85	. 018619	4.85	53.708588		999827	10	56
05	.018907	4.83	. 018910	4.85	52.882109		. 999821	. 08	55
06	.019197	4.85	.019201	4.85	52.080673		. 999816	. 10	54
07	.01) 488	4.85	. 019492	4.85	51.303157		. 999810	. 10	53
08	. 019779	4.85	. 019783	4.85	50.548506		. 999804	. 08	52
39	. 020070	4.85	. 020074	4.85	49.815726		. 999799	. 10	51
10	0.020361	4.85	0.020365	4.85	49.103881		0.999793	. 10	50
11	. 020652	4.83	. 020656	4.85	48.412084		999787	. 10	49
12	. 020942	4.85	. 020947	4.85	47.739501		. 999781	. 10	48
13	. 021233	4.85	. 021238	4.85	47.085343		. 999775	. 12	47
14	. 021524	4.85	. 021529	4.85	46.448862		. 999768	. 10	46
15	. 021815	4.85	. 021820	4.85	45.829351		. 999762	. 10	45
16	. 022106	4.85	. 022111	4.85	45.226141		. 999756	. 12	44
17	. 022397	4.83	. 022402	4.85	44.638596		. 999749	. 10	43
18	. 022687	4.85	. 022693	4.85	44.066113		. 999743	. 12	42
19	022978	4.85	022984	4.85	43.508122		. 999736	12	41
20	0.023269	4.85	0.023275	4.85	42.964077		0.999729	. 12	40
21	. 023560	4.85	. 023566	4.85	42.433464		. 999722	. 10	39
22	. 023851	4.83	. 023857	4.85	41.915799		. 999716	. 12	38
23	. 024141	4.85	. 024148	4.85	41.410588		. 999709	. 13	37
24	. 024432	4.85	. 024439	4.87	40.917412		. 999701	. 12	36
25	. 024723	4.85	. 024731	4.85	40.435837		. 999694	. 12	35
26	. 025014	4.85	. 025022	4.85	39.965461		. 999687	. 12	34
27	. 025305	4.83	. 025313	4.85	39.505895		. 999680	. 13	33
28	. 025595	4.85	. 025604	4.85	39.056771		. 999672	. 12	32
29	. 025886	4.85	. 025895	4.85	38.617738		. 999665	. 13	31
30	0.026177	4.85	0.026186	4.85	38.188459		0.999657	. 12	30
31	. 026468	4.85	. 026477	4.85	37.768613		. 999650	. 13	29
32	. 026759	4.83	. 026768	4.85	37.357892		. 999642	. 13	28
33	. 027049	4.85	. 027059	4.85	36.956001		. 999634	. 13	27
34	. 027340	4.85	. 027350	4.85	36.562659		. 999626	. 13	26
35	027631	4.85	. 027641	4.87	36.177596		. 999618	. 13	25
36	027922	4.83	. 027933	4.85	35.800553		999610	13	24
37	. 028212	4.83	. 028224	4.85	35.431282		999602	. 13	23
38	. 028503	4.85	. 028515	4.85	35.069546		. 999594	. 15	22
39	028794	4.85	. 028806	4.85	34.715115		. 999585	. 13	21
40	0.029085	4.83	0.029097	4.85	34.367771		0.999577	. 15	20
41	.029375	4.85	029388	4.85	34.027303		. 999568	. 13	19
42	. 029666	4.85	. 029679	4.85	33.693509		. 999560	. 15	18
43	. 029957	4.85	. 029970	4.87	33.366194		. 999551	. 15	17
44	. 030248	4.85	. 030262	4.85	33.045173		. 999542	. 13	16
45	. 030539	4.83	. 030553	4.85	32.730264		. 999534	. 15	15
46	. 030829	4.85	. 030844	4.85	32.421295		999525	. 15	14
47	.031120	4.85	. 031135	4.85	32.118099		. 999516	. 15	13
48	. 031411	4.85	. 031426	4.85	31.820516		999507	. 17	12
49	.031702	4.83	.031717	4.87	31.528392		. 999497	. 15	11
50	0.031992	4.85	0.032009	4.85	31.241577		0.999488	. 15	10
51	. 032283	4.85	. 032300	4.85	30.959928		999479	. 17	09
52	. 032574	4.83	. 032591	4.85	30.683307		999469	. 15	08
53	. 032864	4.85	. 032882	4.85	30.411580		. 999460	. 17	07
54	. 033155	4.85	. 033173	4.87	30.144619		. 999450	. 15	06
55	. 033446	4.85	. 033465	4.85	29.882299		. 999441	. 17	05
56	. 033737	4.83	. 033756	4.85	29.624499		. 999431	. 17	04
57	. 034027	4.85	. 034047	4.85	29.371106		. 999421	. 17	03
58	. 034318	4.85	. 034338	4.85	29.122005		. 999411	. 17	02
59	. 034609	4.83	. 034630	4.85	28.877089		. 999401	. 17	01
60	0.034899		0.034921		28.636253		0.999391		00
	Cos	d."	Cot	d."	Tan	d."	Sin	d."	

Table A-1. Natural trigonometric functions (continued)

	Sin	d."	Tan	d."	Cot	d."	Cos	d."	
00'	0.034899	4.85	0.034921	4.85	28.6363		0.999391	. 17	60^{\prime}
01	.035190	4.85	. 035212	4.85	28.3994		.999381	. 18	59
02	.035481	4.85	. 035503	4.87	28.1664		. 999370	. 17	58
03	.035772	4.83	.035795	4.85	27.9372		. 999360	. 17	57
04	.036062	4.85	.036086	4.85	27.7117		999350	18	56
05	.036353	4.85	.036377	4.85	27.4899		999339	. 18	55
06	. 036644	4.83	. 036668	4.87	27.2715		999328	. 17	54
07	.036934	4.85	.036960	4.85	27.0566		999318	. 18	53
08	. 037225	4.85	.037251	4.85	26.8450		. 999307	. 18	52
09	. 037516	4.83	.037542	4.87	26.6367		.999296	. 18	51
10	0.037806	4.85	0.037834	4.85	26.4316		0.999285	. 18	50
11	.038097	4.85	.038125	4.85	26.2296		. 999274	. 18	49
12	.038388	4.83	.038416	4.85	26.0307		. 999263	. 18	48
13	.038678	4.85	.038707	4.87	25.8348		. 999252	. 20	47
14	. 038969	4.85	. 038999	4.85	25.6418		. 999240	. 18	46
15	. 039260	4.83	. 039290	4.85	25.4517		. 999229	. 18	45
16	.039550	4.85	. 039581	4.87	25.2644		. 999218	. 20	44
17	. 039841	4.85	.039873	4.85	25.0798		. 999206	. 20	43
18	.040132	4.83	.040164	4.87	24.8978		.999194	. 18	42
19	.040422	4.85	.040456	4.85	24.7185		.999183	. 20	41
20	0.040713	4.85	0.040747	4.85	24.5418		0.999171	. 20	40
21	.041004	4.83	.041038	4.87	24.3675		.999159	. 20	39
22	. 041294	4.85	.041330	4.85	24.1957		. 999147	20	38
23	.041585	4.85	.041621	4.85	24.0263		.999135	. 20	37
24	.041876	4.83	.041912	4.87	23.8593		. 999123	. 20	36
25	. 042166	4.85	. 042204	4.85	23.6945		.999111	. 22	35
26	. 042457	4.85	. 042495	4.87	23.5321		.999098	. 20	34
27	.042748	4.83	. 042787	4.85	23.3718		. 999086	. 22	33
28	.043038	4.85	.043078	4.87	23.2137		.999073	20	32
29	.043329	4.83	.043370	4.85	23.0577		999061	22	31
30	0.043619	4.85	0.043661	4.85	22.9038		0.999048	22	30
31	. 043910	4.85	. 043952	4.87	22.7519		. 999035	. 20	29
32	.044201	4.83	. 044244	4.85	22.6020		.999023	. 22	28
33	.044491	4.83	.044535	4.87	22.4541		. 999010	. 22	27
34	.044782	4.85	.044827	4.85	22.3081		. 998997	22	26
35	.045072	4.85	.045118	4.87	22.1640		. 998984	22	25
36	.045363	4.85	.045410	4.85	22.0217		.998971	. 23	24
37	. 045654	4.83	.045701	4.87	21.8813		. 998957	. 22	23
38	. 045944	4.85	. 045993	4.85	21.7426		. 998944	. 22	22
39	. 046235	4.83	.046284	4.87	21.6056		.998931	. 23	21
40	0.046525	4.85	0.046576	4.85	21.4704		0.998917	. 22	20
41	.046816	4.83	.046867	4.87	21.3369		. 998904	23	19
42	.047106	4.85	.047159	4.85	21.2049		.998890	. 23	18
43	.047397	4.85	.047450	4.87	21.0747		.998876	. 23	17
44	. 047688	4.83	.047742	4.85	20.9460		.998862	. 23	16
45	. 047978	4.83	.048033	4.87	20.8188		998848	23	15
46	. 048269	4.83	.048325	4.87	20.6932		.998834	. 23	14
47	.048559	4.85	.048617	4.85	20.5691		.998820	. 23	13
48	.048850	4.83	.048908	4.87	20.4465		.998806	. 23	12
49	.049140	4.85	.049200	4.85	20.3253		.998792	. 23	11
50	0.049431	4.83	0.049491	4.87	20.2056		0.998778	. 25	10
51	.049721	4.85	.049783	4.87	20.0872		.998763	. 23	09
52	.050012	4.83	.050075	4.85	19.9702		.998749	. 25	08
53	.050302	4.85	. 050366	4.87	19.8546		.998734	. 25	07
54	. 050593	4.83	. 050658	4.85	19.7403		.998719	. 23	06
55	. 050883	4.85	.050949	4.87	19.6273		.998705	. 25	05
56	.051174	4.83	.051241	4.87	19.5156		.998690	. 25	04
57	.051464	4.85	.051533	4.85	19.4051		.998675	. 25	03
58	.051755	4.83	.051824	4.87	19.2959		. 998660	. 25	02
59	.052045	4.85	.052116	4.87	19.1879		.998645	. 25	01
60	0.052336		0.052408		19.0811		0.998630		00
	Cos	d."	Cot	d."	Tan	d."	Sin	d."	

Table A-1. Natural trigonometric functions (continued)

	Sin	d."	Tan	d."	Cot	d."	Cos	d."	
00'	0.069756	4.85	0.069927	4.87	14.3007	9.93	0.997564	. 33	60°
01	. 070047	4.83	. 070219	4.87	. 2411	9.83	. 997544	. 35	59
02	. 070337	4.83	070511	4.88	. 1821	9.77	. 997523	. 33	58
03	. 070627	4.83	. 070804	4.87	. 1235	9.67	997503	. 35	57
04	. 070917	4.83	. 071096	4.88	. 0655	9.60	997482	. 33	56
05	. 071207	4.83	071389	4.87	14.0079	9.53	997462	. 35	55
06	. 071497	4.85	. 071681	4.87	13.9507	9.45	997441	. 35	54
07	. 071788	4.83	. 071973	4.88	. 8940	9.37	997420	. 35	53
08	. 072078	4.83	. 072266	4.87	. 8378	9.28	997399	. 35	52
09	. 072368	4.83	072558	4.88	. 7821	9.23	997378	35	51
10	0.072658	4.83	0.072851	4.87	13.7267	9.13	0.997357	35	50
11	. 072948	4.83	. 073143	4.87	. 6719	9.08	997336	37	49
12	. 073238	4.83	. 073435	4.88	. 6174	9.00	. 997314	35	48
13	. 073528	4.83	. 073728	4.87	. 5634	8.93	997293	35	47
14	. 073818	4.83	. 074020	4.88	5098	8.87	997272	37	46
15	. 074108	4.85	. 074313	4.87	4566	8.78	997250	35	45
16	. 074399	4.83	. 074605	4.88	. 4039	8.73	. 997229	37	44
17	. 074689	4.83	. 074898	4.87	. 3515	8.65	997207	37	43
18	. 074979	4.83	. 075190	4.88	2996	8.60	. 997185	. 37	42
19	. 075269	4.83	. 075483	4.87	2480	8.52	. 997163	. 37	41
20	0.075559	4.83	0.075775	4.88	13.1969	8.47	0.997141	. 37	40
21	. 075849	4.83	. 076068	4.88	1461	8.38	. 997119	37	39
22	. 076139	4.83	. 076361	4.87	. 0958	8.33	. 997097	37	38
23	. 076429	4.83	076653	4.88	13.0458	8.27	. 997075	37	37
24	. 076719	4.83	. 076946	4.87	12.9962	8.22	. 997053	38	36
25	. 077009	4.83	. 077238	4.88	9469	8.13	. 997030	37	35
26	. 077299	4.83	. 077531	4.88	. 8981	8.08	997008	38	34
27	. 077589	4.83	. 077824	4.87	. 8496	8.03	. 996985	37	33
28	. 077879	4.83	. 078116	4.88	. 8014	7.97	. 996963	38	32
29	. 078169	4.83	078409	4.88	.7536	7.90	. 996940	. 38	31
30	0.078459	4.83	0.078702	4.87	12.7062	7.85	0.996917	. 38	30
31	. 078749	4.83	. 078994	4.88	. 6591	7.78	. 996894	. 37	29
32	. 079039	4.83	. 079287	4.88	. 6124	7.73	. 996872	. 40	28
33	. 079329	4.83	. 079580	4.88	. 5660	7.68	. 996848	. 38	27
34	. 079619	4.83	. 079873	4.87	. 5199	7.62	. 996825	. 38	26
35	. 079909	4.83	. 080165	4.88	. 4742	7.57	. 996802	. 38	25
36	. 080199	4.83	. 080458	4.88	4288	7.50	. 996779	. 38	24
37	. 080489	4.83	. 080751	4.88	3838	7.47	996756	. 40	23
38	. 080779	4.83	. 081044	4.87	3390	7.40	996732	. 38	22
39	. 081069	4.83	.081336	4.88	2946	7.35	996709	. 40	21
40	0.081359	4.83	0.081629	4.88	12.2505	7.30	0.996685	40	20
41	. 081649	4.83	. 081922	4.88	2067	7.25	. 996661	. 40	19
42	. 081939	4.82	. 082215	4.88	. 1632	7.18	996637	. 38	18
43	. 082228	4.83	. 082508	4.88	. 1201	7.15	996614	. 40	17
44	. 082518	4.83	. 082801	4.88	. 0772	7.10	996590	. 40	16
45	. 082808	4.83	. 083094	4.87	12.0346	7.05	996566	. 42	15
46	. 083098	4.83	. 083386	4.88	11.9923	6.98	996541	. 40	14
47	. 083388	4.83	. 083679	4.88	9504	6.95	996517	. 40	13
48	. 083678	4.83	. 083972	4.88	9087	6.90	996493	. 42	12
49	. 083968	4.83	. 084265	4.88	. 8673	6.85	996468	. 40	11
50	0.084258	4.82	0.084558	4.88	11.8262	6.82	0.996444	. 42	10
51	. 084547	4.83	. 084851	4.88	7853	6.75	996419	. 40	09
52	. 084837	4.83	. 085144	4.88	7448	6.72	. 996395	. 42	08
53	. 085127	4.83	. 085437	4.88	. 7045	6.67	. 996370	. 42	07
54	. 085417	4.83	. 085730	4.88	. 6645	6.62	.996345	. 42	06
55	. 085707	4.83	. 086023	4.88	. 6248	6.58	. 996320	. 42	05
56	. 085997	4.82	. 086316	4.88	5853	6.53	996295	. 42	04
57	. 086286	4.83	. 086609	4.88	5461	6.48	996270	. 42	03
58	. 086576	4.83	. 086902	4.90	. 5072	6.45	. 996245	. 42	02
59	. 086866	4.83	. 087196	4.88	4685	6.40	996220	42	01
60	0.087156		0.087489		11.4301		0.996195		00
	Cos	d"	Cot	d"	Tan	$d^{\prime \prime}$	Sin	$d^{\prime \prime}$	

Table A-1. Natural trigonometric functions (continued)

	Sin	d."	Tan	d."	Cot	d."	Cos	d."	
00^{\prime}	0.087156	4.83	0.087489	4.88	11.4301	6.37	0.996195	43	60^{\prime}
01	. 087446	4.82	. 087782	4.88	. 3919	6.32	996169	. 42	59
02	087735	4.83	. 088075	4.88	. 3540	6.28	996144	43	58
03	. 088025	4.83	088368	4.88	. 3163	6.23	. 996118	42	57
04	. 088315	4.83	. 088661	4.88	. 2789	6.20	.996093	. 43	56
05	. 088605	4.82	. 088954	4.90	. 2417	6.15	.996067	43	55
06	. 088894	4.83	. 089248	4.88	. 2048	6.12	. 996041	. 43	54
07	. 089184	4.83	. 089541	4.88	. 1681	6.08	. 996015	. 43	53
08	. 089474	4.82	. 089834	4.88	. 1316	6.03	995989	43	52
09	. 089763	4.83	. 090127	4.90	. 0954	6.00	. 995963	. 43	51
10	0.090053	4.83	0.090421	4.88	11.0594	5.95	0.995937	43	50
11	090343	4.83	0.090714	4.88	11.0237	5.92	. 995911	. 45	49
12	090633	4.82	. 091007	4.88	10.9882	5.88	. 995884	. 43	48
13	090922	4.83	. 091300	4.90	. 9529	5.85	. 995858	43	47
14	. 091212	4.83	. 091594	4.88	9178	5.82	. 995832	45	46
15	. 091502	4.82	. 091887	4.88	. 8829	5.77	. 995805	. 45	45
16	. 091791	4.83	. 092180	4.90	. 8483	5.73	995778	43	44
17	. 092081	4.83	. 092474	4.88	8139	5.70	. 995752	45	43
18	. 092371	4.82	. 092767	4.90	. 7797	5.67	995725	45	42
19	. 092660	4.83	.093061	4.88	. 7457	5.63	.995698	45	41
20	0.092950	4.82	0.093354	4.88	10.7119	5.60	0.995671	. 45	40
21	. 093239	4.83	. 093647	4.90	. 6783	5.55	. 995644	. 45	39
22	. 093529	4.83	. 093941	4.88	6450	5.53	. 995617	47	38
23	. 093819	4.82	. 094234	4.90	6118	5.48	. 995589	45	37
24	. 094108	4.83	. 094528	4.88	. 5789	5.45	. 995562	. 45	36
25	. 094398	4.82	. 094821	4.90	5462	5.43	. 995535	47	35
26	. 094687	4.83	. 095115	4.88	5136	5.38	. 995507	. 47	34
27	. 094977	4.83	. 095408	4.90	4813	5.37	. 995479	45	33
28	. 095267	4.82	. 095702	4.88	4491	5.32	. 995452	. 47	32
29	. 095556	4.83	. 095995	4.90	4172	5.30	. 995424	. 47	31
30	0.095846	4.82	0.096289	4.90	10.3854	5.27	0.995396	47	30
31	. 096135	4.83	. 096583	4.88	3538	5.23	. 995368	. 47	29
32	. 096425	4.82	. 096876	4.90	3224	5.18	. 995340	. 47	28
33	. 096714	4.83	. 097170	4.90	2913	5.18	995312	47	27
34	. 097004	4.82	. 097464	4.88	2602	5.13	995284	47	26
35	. 097293	4.83	. 097757	4.90	2294	5.10	995256	48	25
36	. 097583	4.82	. 098051	4.90	. 1988	5.08	995227	47	24
37	. 097872	4.83	. 098345	4.88	. 1683	5.03	. 995199	48	23
38	. 098162	4.82	. 098638	4.90	. 1381	5.02	. 995170	47	22
39	.098451	4.83	. 098932	4.90	. 1080	5.00	.995142	48	21
40	0.098741	4.82	0.099226	4.88	10.0780	4.95	0.995113	. 48	20
41	. 099030	4.83	. 099519	4.90	. 0483	4.93	. 995084	. 47	19
42	. 099320	4.82	. 099813	4.90	10.0187	4.90	. 995056	48	18
43	. 099609	4.83	. 100107	4.90	9.9893	4.87	. 995027	48	17
44	. 099899	4.82	. 100401	4.90	9601	4.85	. 994998	48	16
45	. 100188	4.82	. 100695	4.90	. 9310	4.82	. 994969	50	15
46	. 100477	4.83	. 100989	4.88	. 9021	4.78	. 994939	48	14
47	. 100767	4.82	. 101282	4.90	. 8734	4.77	. 994910	48	13
48	. 101056	4.83	. 101576	4.90	. 8448	4.73	. 994881	. 50	12
49	101346	4.82	.101870	4.90	. 8164	4.70	.994851	. 48	11
50	0.101635	4.82	0.102164	4.90	9.7882	4.68	0.994822	. 50	10
51	. 101924	4.83	. 102458	4.90	. 7601	4.65	. 994792	. 50	09
52	. 102214	4.82	. 102752	4.90	. 7322	4.63	. 994762	. 48	08
53	.102503	4.83	. 103046	4.90	. 7044	4.60	. 994733	. 50	07
54	. 102793	4.82	. 103340	4.90	. 6768	4.58	. 994703	. 50	06
55	. 103082	4.82	. 103634	4.90	. 6493	4.55	. 994673	. 50	05
56	. 103371	4.83	. 103928	4.90	. 6220	4.52	. 994643	. 50	04
57	. 103661	4.82	. 104222	4.90	. 5949	4.50	. 994613	. 50	03
58	. 103950	4.82	.104516	4.90	. 5679	4.47	.994583	. 52	02
59	. 104239	4.82	. 104810	4.90	. 5411	4.45	.994552	. 50	01
60	$\begin{gathered} 0.104528 \\ \mathrm{Sin} \end{gathered}$	d. ${ }^{\text {a }}$	$\begin{gathered} 0.105104 \\ \operatorname{Tan} \end{gathered}$	d."	$\begin{gathered} 9.5144 \\ \text { Cot } \end{gathered}$	d."	$\begin{gathered} 0.994522 \\ \operatorname{Cos} \end{gathered}$	d."	00

	Sin	d."	Tan	d."	Cot	d. ${ }^{\text {" }}$	Cos	d."	
00'	0.104528	4.83	0.105104	4.90	9.51436	44.25	0.944522	. 52	60
01	. 104818	4.82	. 105398	4.90	.48781	44.00	994491	. 50	59
02	. 105107	4.82	. 105692	4.92	46141	43.77	.994461	. 52	58
03	. 105396	4.83	. 105987	4.90	.43515	43.52	. 994430	. 50	57
04	. 105686	4.82	. 106281	4.90	40904	43.28	. 994400	. 52	56
05	. 105975	4.82	. 106575	4.90	38307	43.05	. 994369	. 52	55
06	. 106264	4.82	. 106869	4.90	. 35724	42.82	. 994338	. 52	54
07	. 106553	4.83	. 107163	4.92	. 33155	42.60	.994307	. 52	53
08	. 106843	4.82	. 107458	4.90	. 30599	42.35	. 994276	. 52	52
09	. 107132	4.82	. 107752	4.90	28058	42.13	. 994245	. 52	51
10	0.107421	4.82	0.108046	4.90	9.25530	41.90	0.994214	. 53	50
11	. 107710	4.82	. 108340	4.92	23016	41.67	. 994182	. 52	49
12	. 107999	4.83	108635	4.90	20516	41.47	. 994151	. 52	48
13	. 108289	4.82	108929	4.90	. 18028	41.23	994120	. 52	47
14	. 108578	4.82	. 109223	4.92	. 15554	41.02	. 994088	. 53	46
15	. 108867	4.82	. 109518	4.90	. 13093	40.78	. 994056	52	45
16	. 109156	4.82	. 109812	4.92	. 10646	40.58	. 994025	. 53	44
17	. 109445	4.82	. 110107	4.90	. 08211	40.37	. 993993	53	43
18	. 109734	4.82	. 110401	4.90	. 05789	40.17	. 993961	53	42
19	. 110023	4.83	.110695	4.92	. 03379	39.93	. 993929	53	41
20	0.110313	4.82	0.110990	4.90	9.00983	39.75	0.993897	53	40
21	. 110602	4.82	. 111284	4.92	8.98598	39.52	. 993865	53	39
22	. 110891	4.82	. 111579	4.90	96227	39.33	. 993833	55	38
23	.111180	4.82	.111873	4.92	93867	39.12	993800	53	37
24	.111469	4.82	. 112168	4.92	.91520	38.92	. 993768	. 55	36
25	. 111758	4.82	. 112463	4.90	89185	38.72	. 993735	. 53	35
26	. 112047	4.82	. 112757	4.92	86862	38.52	. 993703	. 55	34
27	. 112336	4.82	. 113052	4.90	84551	38.32	. 993670	. 53	
28	. 112625	4.82	. 113346	4.92	. 88252	38.13	993638	. 55	32
29	. 112914	4.82	. 113641	4.92	. 79964	37.92	993605	. 55	31
30	0.113203	4.82	0.113936	4.90	8.77689	37.73	0.993572	. 55	30
31	. 113492	4.82	. 114230	4.92	. 75425	37.55	. 993539	. 55	29
32	. 113781	4.82	. 114525	4.92	. 73172	37.35	993506	. 55	28
33	. 114070	4.82	. 114820	4.90	70931	37.17	993473	57	27
34	. 114359	4.82	. 115114	4.92	. 68701	36.98	. 993439	55	26
35	. 114648	4.82	. 115409	4.92	. 66482	36.78	.993406	55	25
36	. 114937	4.82	. 115704	4.92	64275	36.62	. 993373	57	24
37	. 115226	4.82	. 115999	4.92	. 62078	36.42	. 993339	. 55	23
38	. 115515	4.82	. 116294	4.90	59893	36.25	. 993306	57	22
39	.115804	4.82	. 116588	4.92	57718	36.05	. 993272	57	21
40	0.116093	4.82	0.116883	4.92	8.55555	35.88	0.993238	55	20
41	. 116382	4.82	. 117178	4.92	. 53402	35.72	. 993205	57	19
42	. 116671	4.82	. 117473	4.92	.51259	35.52	. 993171	57	18
43	. 116960	4.82	. 117768	4.92	. 49128	35.35	. 993137	57	17
44	. 117249	4.80	. 118063	4.92	.47007	35.18	993103	58	16
45	. 117537	4.82	. 118358	4.92	.44896	35.02	. 993068	. 57	15
46	. 117826	4.82	. 118653	4.92	42795	34.83	. 993034	. 57	14
47	. 118115	4.82	. 118948	4.92	. 40705	34.67	. 993000	. 57	13
48	. 118404	4.82	. 119243	4.92	.38625	34.50	. 992966	. 58	12
49	. 118693	4.82	. 119538	4.92	.36555	34.32	. 992931	. 58	11
50	0.118982	4.80	0.119833	4.92	8.34496	34.17	0.992896	. 57	10
51	. 119270	4.82	. 120128	4.92	. 32446	34.00	. 992862	. 58	09
52	. 119559	4.82	. 120423	4.92	. 30406	33.83	. 992827	. 58	08
53	. 119848	4.82	. 120718	4.92	28376	33.68	. 992792	. 58	07
54	. 120137	4.82	. 121013	4.92	. 26355	33.50	. 992757	. 58	06
55	. 120426	4.80	.121308	4.93	. 24345	33.35	. 992722	58	05
56	. 120714	4.82	. 121604	4.92	. 22344	33.22	. 992687	. 58	04
57	.121003	4.82	. 121899	4.92	. 20552	33.03	. 992652	. 58	03
58	. 121292	4.82	. 122194	4.92	. 18370	32.87	. 992617	. 58	02
59	.121581	4.80	.122489	4.93	. 16398	32.72	. 992582	. 60	01
60	0.121869		0.122785		8.14435		0.992546		00
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	

Table A-1. Natural trigonometric functions (continued)

	Sin	d."	Tan	d."	Cot	d."	Cos	d. ${ }^{\prime \prime}$	
00'	0.121869	4.82	0.122785	4.92	8.14435	32.57	0.992546	. 58	60^{\prime}
01	. 122158	4.82	123080	4.92	. 12481	32.42	. 992511	60	59
02	.122447	4.80	123375	4.92	. 10536	32.27	. 992475	60	58
03	. 122735	4.82	123670	4.93	08600	32.10	992439	. 58	57
04	. 123024	4.82	123966	4.92	. 06674	31.97	992404	60	56
05	. 123313	4.80	. 124261	4.93	. 04756	31.80	992368	. 60	55
06	. 123601	4.82	124557	4.92	02848	31.67	. 992332	. 60	54
07	. 123890	4.82	. 124852	4.92	00948	31.50	. 992296	. 60	53
08	. 124179	4.80	125147	4.93	7.99058	31.37	. 992260	. 60	52
09	. 124467	4.82	125443	4.92	. 97176	31.23	. 992224	. 62	51
10	0.124756	4.82	0.125738	4.93	7.95302	31.07	0.992187	. 60	50
11	. 125045	4.80	. 126034	4.92	. 93438	30.93	. 992151	. 60	49
12	.125333	4.82	. 126329	4.93	. 91582	30.80	. 992115	. 62	48
13	125622	4.80	. 126625	4.92	. 89734	30.65	992078	60	47
14	. 125910	4.82	126920	4.93	. 87895	30.52	. 992042	. 62	46
15	. 126199	4.82	. 127216	4.93	. 86064	30.37	. 992005	. 62	45
16	. 126488	4.80	127512	4.92	. 84242	30.23	. 991968	. 62	44
17	. 176776	4.82	. 127807	4.93	. 82428	30.10	. 991931	62	43
18	127065	4.80	128103	4.93	. 80622	29.95	. 991894	62	42
19	127353	4.82	. 128399	4.92	. 78825	29.83	. 991857	. 62	41
20	0.127642	4.80	128694	4.93	7.77035	29.68	0.991820	. 62	40
21	127930	4.82	128990	4.93	. 75254	29.57	. 991783	. 62	39
22	. 128219	4.80	129286	4.93	73480	29.42	991746	. 62	38
23	. 128507	4.82	129582	4.92	71715	29.30	991709	. 63	37
24	. 128796	4.80	129877	4.93	. 69957	29.15	991671	. 62	36
25	. 129084	4.82	130173	4.93	. 68208	29.03	991634	. 63	35
26	. 129373	4.80	130469	4.93	.66466	28.90	991596	. 63	34
27	. 129661	4.80	. 130765	4.93	. 64732	28.78	991558	. 62	33
28	. 129949	4.82	. 131061	4.93	63005	28.63	. 991521	. 63	32
29	. 130238	4.80	131357	4.92	. 61287	28.53	. 991483	. 63	31
30	0.130528	4.82	0.131652	4.93	7.59575	28.38	0.991445	63	30
31	. 130815	4.80	. 131948	4.93	57872	28.27	.991407	63	29
32	.131103	4.80	. 132244	4.93	56176	28.15	. 998369	. 63	28
33	. 131391	4.82	. 132540	4.93	54487	28.02	991331	. 65	27
34	. 131680	4.80	. 132836	4.93	52806	27.00	991292	63	26
35	. 131968	4.80	. 133132	4.93	. 51132	27.78	. 991254	63	25
36	. 132256	4.82	. 133428	4.95	.49465	27.65	. 991216	65	24
37	. 132545	4.80	. 133725	4.93	. 47806	27.53	. 991177	. 65	23
38	. 132833	4.80	134021	4.93	.46154	27.42	.991138	. 63	22
39	.133121	4.82	. 134317	4.93	.44509	27.30	.991100	. 65	21
40	0.133410	4.80	0.134613	4.93	7.42871	27.18	0.991061	. 65	20
41	. 133698	4.80	. 134909	4.93	.41240	27.07	. 991022	. 65	19
42	133986	4.80	. 135205	4.95	. 39616	26.95	. 990083	. 65	18
43	134274	4.82	.135502	4.93	. 37999	26.83	. 990994	. 65	17
44	. 134563	4.80	. 135798	4.93	36389	26.72	. 990905	. 65	16
45	. 134851	4.80	. 136094	4.93	. 34786	26.60	. 990866	65	15
46	135139	4.80	136390	4.95	33190	26.50	. 990827	. 67	14
47	. 135427	4.82	. 136687	4.93	31600	26.37	. 990787	65	13
48	. 135716	4.80	. 136983	4.93	33018	26.27	. 990748	67	12
49	. 136004	4.80	. 137279	4.95	28442	26.15	990708	. 65	11
50	0.136292	4.80	0.137576	4.93	7.26873	26.05	0.990669	. 67	10
51	. 136580	4.80	137872	4.95	.25310	25.93	. 990629	. 67	09
52	. 136868	4.80	. 138169	4.93	23754	25.83	. 990589	. 67	08
53	. 137156	4.82	138465	4.93	22204	25.72	990549	. 67	07
54	. 137445	4.80	. 138761	4.95	. 20661	25.60	. 990509	. 67	06
55	. 137733	4.80	. 139058	4.93	. 19125	25.52	. 990469	. 67	05
56	. 138021	4.80	. 139354	4.95	. 17594	25.53	. 990429	67	04
57	. 138309	4.80	. 139651	4.95	. 16071	25.30	. 990389	. 67	03
58	. 138597	4.80	. 139948	4.93	. 14553	25.18	. 990349	. 67	02
59	. 138883	4.80	. 140244	4.95	. 13042	25.08	. 990309	68	01
60	0.139173		0.140541		7.11537		0.099268		00
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	

Table A-1. Natural trigonometric functions (continued)

Table A-1. Natural trigonometric functions (continued)

Table A-1. Natural trigonometric functions (continued)

	10°								
	Sin	d."	Tan	d. ${ }^{\prime \prime}$	Cot	d."	Cos	d. ${ }^{\text {a }}$	
00^{\prime}	0.173648	4.78	0.176327	5.00	5.67128	16.07	0.984808	. 85	60°
01	. 173935	4.77	. 176627	5.00	. 66165	16.00	.984757	. 83	59
02	.174221	4.78	.176927	5.00	.65205	15.95	.984707	. 85	58
03	.174508	4.77	. 177227	5.00	.64248	15.88	. 984656	. 85	57
04	.174794	4.77	.177527	5.00	.63295	15.85	.984605	. 85	56
05	.175080	4.78	.177827	5.00	.62344	15.78	. 984554	. 85	55
06	.175367	4.77	.178127	5.00	61397	15.75	.984503	. 85	54
07	.175653	4.77	.178427	5.00	.60452	15.68	.984452	. 85	53
08	.175939	4.78	.178727	5.02	. 59511	15.63	984350	. 87	51
09	. 176226	4.77	.179028	5.00	.58573	15.58	. 984350	. 87	51
10	0.176512	4.77	0.179328	5.00	5.57638	15.53	0.984298	. 85	50
11	. 176798	4.78	. 179628	5.00	. 56706	15.48	. 984247	. 85	49
12	.177085	4.77	.179928	5.02	.55777	15.43	.984196	. 87	48
13	.177371	4.77	. 180229	5.00	. 54851	15.40	. 984144	. 87	47
14	. 177657	4.78	.180529	5.00	.53927	15.33	.984092	. 85	46
15	. 177944	4.77	.180829	5.02	. 53007	15.28	984041	. 87	45
16	. 178230	4.77	.181130	5.00	.52090	15.23	. 983989	. 87	44
17	.178516	4.77	.181430	5.02	. 51176	15.20	. 983937	. 87	43
18	. 178802	4.77	.181731	5.00	. 50264	15.13	. 983885	. 87	42
19	.179088	4.78	.182031	5.02	.49356	15.08	.983833	. 87	41
20	0.179375	4.77	0.182332	5.00	5.48451	15.05	0.983781	. 87	40
21	. 179661	4.77	. 182632	5.02	.47548	15.00	.983729	. 88	39
22	.179947	4.77	.182933	5.02	.46648	14.95	. 983676	87	38
23	.180233	4.77	.183234	5.00	.45751	14.90	.983624	. 88	37
24	. 180519	4.77	.183534	5.02	.44857	14.85	983571	. 87	36
25	.180805	4.77	.183835	5.02	.43966	14.82	.983519	. 88	35
26	.181091	4.77	.184136	5.02	.43077	14.75	.983466	. 87	34
27	.181377	4.77	.184437	5.00	.42192	14.72	.983414	. 88	33
28	.181663	4.78	.184737	5.02	.41309	14.67	.983361	. 88	32
29	.181950	4.77	. 185038	5.02	.40429	14.62	.983308	. 88	31
30	0.182236	4.77	0.185339	5.02	5.39552	14.58	0.983255	. 88	30
31	. 182522	4.77	. 185640	5.02	. 38677	14.53	. 983202	. 88	29
32	182808	4.77	. 185941	5.02	.37805	14.48	.983149	. 88	28
33	183094	4.75	186242	5.02	.36936	14.43	.983096	. 90	27
34	.183379	4.77	. 186543	5.02	.36070	14.40	.983042	. 88	26
35	.183665	4.77	.186844	5.02	. 35206	14.35	.982989	. 90	25
36	.183951	4.77	.187145	5.02	.34345	14.30	.982935	. 88	24
37	.187237	4.77	.187446	5.02	.33487	14.27	.982882	. 90	23
38	. 184523	4.77	.187747	5.02	.32631	14.22	.982828	. 90	22
39	. 184809	4.77	. 188048	5.02	.31778	14.17	.982774	88	21
40	0.185095	4.77	0.188349	5.03	5.30928	14.13	0.982721	. 90	20
41	.185381	4.77	.188651	5.02	. 30080	14.08	.982667	. 90	19
42	.185667	4.75	.188952	5.02	. 29235	14.03	.982613	. 90	18
43	. 185952	4.77	. 189253	5.03	. 28393	14.00	.982559	. 90	17
44	. 186238	4.77	. 189555	5.02	. 27553	13.97	.982505	. 92	16
45	.186524	4.77	.189856	5.02	26715	13.92	.982450	. 90	15
46	.186810	4.77	.190157	5.03	. 25880	13.87	.982396	. 90	14
47	.187096	4.75	.190459	5.02	25048	13.83	. 982342	. 92	13
48	.187381	4.77	.190760	5.03	. 24218	13.78	. 982287	. 90	12
49	. 187667	4.77	.191062	5.02	.23391	13.75	.982233	. 92	11
50	0.187953	4.75	0.191363	5.03	5.22566	13.70	0.982178	. 92	10
51	. 188238	4.77	.191665	5.02	. 21744	13.65	.982123	. 90	09
52	.188524	4.77	.191966	5.03	. 20925	13.63	.982069	. 92	08
53	.188810	4.75	. 192268	5.03	. 20107	13.57	.982014	. 92	07
54	.189095	4.77	.192570	5.02	.19293	13.55	. 981959	. 92	06
55	.189381	4.77	.192871	5.03	.18480	13.48	. 981904	. 92	05
56	.189667	4.75	.193173	5.03	.17671	13.47	. 981849	. 93	04
57	.189952	4.77	.193475	5.03	. 16863	13.42	.981793	. 92	03
58	. 190238	4.75	.193777	5.02	.16058	13.37	.981738	. 92	02
59	.190523	4.77	. 194078	5.03	. 15256	13.35	.981683	. 93	01
60	0.190809		0.194380		5.14455		0.981627		00
	Sin	d."	Tan	d. "	Cot	d. "	Cos	d."	

A-12

	¢\％			¢ ${ }_{\text {¢ }}^{\sim}$	ㅇローロペーセサッニ	
$\stackrel{*}{\circ}$						$\approx 888888 \% 88=$
©		 		のめ © N	 	N\＆o
	0	oo －	용ㅇㅇㅇㅇㅇㅇㅇㅇ뭉 O－ 0	ののロのののローのロの 	 o	 － 0
$\stackrel{\square}{0}$	 	$\mathfrak{N} \mathfrak{N} \mathfrak{N} \mathfrak{N} \mathfrak{N} \mathfrak{N} \mathfrak{N} \mathfrak{N} \mathfrak{N}$	 	ベペNボざニた	シニニニニニニニここ	戸ニニニニニニニニテ
$\overline{0}$						
	$\underset{\sim}{\ddagger}$	 	 \pm	бо $+$	毋 $+$	
\cdots	Li	 	 	 	人ٌٌㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 	L
$\underset{\sim}{\text { ¢ }}$		－응ㅇㅇㅇNNNNN 	 	 		
			－	लूलतलNलतNल －	응 人 人 0	 － \circ
$\stackrel{\square}{0}$		 	なかながすがすがす	$\forall 寸 寸 ナ 寸 寸 \forall 寸 \forall 寸$	ずすびすがず	チ寸チ寸寸ナ寸ナ寸チ
\cdots	ํロローヘヘヘッツ 	ホのすOnOツーツー 				
					 －	 \circ
			ㅅNNNNへN	－		

Table A-1. Natural trigonometric functions (continued)

Table A-1. Natural trigonometric functions (continued)

Table A-1. Natural trigonometric functions (continued)

	14°								
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	
00'	0.241922	4.70	0.249328	5.15	4.01078	8.27	0.970296	1.18	60
01	. 242204	4.70	. 249637	5.15	. 00582	8.27	. 970225	1.17	59
02	. 242486	4.72	. 249946	5.15	. 00086	8.23	. 970155	1.18	58
03	. 242769	4.70	250255	5.15	3.99592	8.22	. 970084	1.17	57
04	. 243051	4.70	250564	5.15	. 99099	8.20	. 970014	1.18	56
05	. 243333	4.70	. 250873	5.17	. 98607	8.17	. 969943	1.18	55
06	243615	4.70	251183	5.15	.98117	8.17	. 969872	1.18	54
07	243897	4.70	251492	5.15	. 97627	8.13	. 969801	1.18	53
08	. 244179	4.70	. 251801	5.17	. 97139	8.13	. 969730	1.18	52
09	244461	4.70	. 252111	5.15	.96651	8.10	. 969659	1.18	51
10	0.244743	4.70	0.252420	5.15	3.96165	8.08	0.969588	1.18	50
11	245025	4.70	. 252729	5.17	.95680	8.07	.969517	1.20	49
12	.245307	4.70	. 253039	5.15	. 95196	8.05	. 969445	1.18	48
13	. 245589	4.70	. 253348	5.17	. 94713	8.02	. 969374	1.20	47
14	. 245871	4.70	. 253658	5.17	. 94232	8.02	. 969302	1.18	46
15	. 246153	4.70	. 253968	5.15	.93751	8.00	. 969231	1.20	45
16	. 246435	4.70	254277	5.17	93271	7.97	. 969159	1.18	44
17	246717	4.70	254587	5.17	. 92793	7.95	. 969088	1.20	43
18	246999	4.70	254897	5.17	. 92316	7.95	. 969016	1.20	42
19	247281	4.70	255207	5.15	. 91839	7.92	. 968944	1.20	41
20	0.247563	4.70	0.255516	5.17	3.91364	7.90	0.968872	1.20	40
21	. 247845	4.68	. 255826	5.17	. 90390	7.88	. 968800	1.20	39
22	. 248126	4.70	256136	5.17	. 90417	7.87	. 968728	1.22	38
23	. 248408	4.70	. 256446	5.17	. 89945	7.85	. 968655	1.20	37
24	. 248690	4.70	. 256756	5.17	. 89474	7.83	. 968583	1.20	36
25	. 248972	4.68	. 257066	5.18	89004	7.80	. 968511	1.22	35
26	. 249253	4.70	257377	5.17	.88536	7.80	. 968438	1.20	34
27	. 249535	4.70	. 257687	5.17	. 88068	7.78	. 968366	1.22	33
28	. 249817	4.68	. 257997	5.17	. 87601	7.75	. 968293	1.22	32
29	. 250098	4.70	. 258307	5.18	.87136	7.75	. 968220	1.20	31
30	0.250380	4.70	0.258618	5.17	3.86671	7.72	0.968148	1.22	30
31	. 250662	4.68	. 258928	5.17	. 86208	7.72	. 968075	1.22	29
32	. 250943	4.70	. 259238	5.18	.85745	7.68	. 968002	1.22	28
33	251225	4.68	. 259549	5.17	85284	7.67	. 967929	1.22	27
34	251506	4.70	. 259859	5.18	. 84824	7.67	. 967856	1.23	26
35	. 251788	4.68	. 260170	5.17	84364	7.63	. 967782	1.22	25
36	. 252069	4.70	. 260480	5.18	. 83906	7.62	. 967709	1.22	24
37	. 252351	4.68	. 260791	5.18	. 83449	7.62	. 967636	1.23	23
38	. 252632	4.70	. 261102	5.18	. 82992	7.58	. 967562	1.22	22
39	. 252914	4.68	. 261413	5.17	.82537	7.57	. 967489	1.23	21
40	0.253195	4.70	0.261723	5.18	3.82083	7.55	0.967415	1.22	20
41	. 253477	4.68	. 262034	5.18	.81630	7.55	. 967342	1.23	19
42	. 253758	4.68	. 262345	5.18	. 81177	7.52	. 967268	1.23	18
43	. 254039	4.70	. 262656	5.18	. 80726	7.50	. 967194	1.23	17
44	. 254321	4.68	. 262967	5.18	. 80276	7.48	. 967120	1.23	16
45	. 254602	4.68	263278	5.18	. 79827	7.48	. 967046	1.23	15
46	. 254883	4.70	263589	5.18	. 79378	7.45	. 966972	1.23	14
47	. 255165	4.68	263900	5.18	78931	7.43	. 966898	1.25	13
48	. 255446	4.68	. 264211	5.20	. 78485	7.42	. 966823	1.23	12
49	. 255727	4.68	. 264523	5.18	. 78040	7.42	. 966749	1.23	11
50	0.256008	4.68	0.264834	5.18	3.77595	7.38	0.966675	1.25	10
51	. 256289	4.70	. 265145	5.20	. 77152	7.38	966600	1.23	09
52	. 256571	4.68	. 265457	5.18	. 76709	7.35	966526	1.25	08
53	. 256852	4.68	. 265768	5.18	. 76268	7.33	966451	1.25	07
54	. 257133	4.68	. 266079	5.20	. 75828	7.33	966376	1.25	06
55	. 257414	4.68	. 266391	5.18	. 75388	7.30	. 966301	1.25	05
56	257695	4.68	266702	5.20	. 74950	7.30	. 966226	1.25	04
57	257976	4.68	267014	5.20	. 74512	7.28	. 966151	1.25	03
58	. 258257	4.68	267326	5.18	. 74075	7.25	.966076	1.25	02
59	. 258538	4.68	. 267637	5.20	. 73640	7.25	966001	1.25	01
60	$\begin{gathered} 0.258819 \\ \operatorname{Sin} \end{gathered}$	d."	$\begin{gathered} 0.267949 \\ \operatorname{Tan} \end{gathered}$	d."	$\begin{gathered} 3.73205 \\ \mathrm{Cot} \end{gathered}$	d."	$\begin{gathered} 0.965926 \\ \operatorname{Cos} \end{gathered}$	d."	00

A-16

Table A-1. Natural trigonometric functions (continued)

	15°								
	Sin	d."	Tan	d. "	Cot	d."	Cos	d. "	
00'	0.258819	4.68	0.267949	5.20	3.73205	7.23	0.965926	1.27	60^{\prime}
01	259100	4.68	268261	5.20	. 72771	7.22	. 965850	1.25	59
02	259381	4.68	268573	5.20	. 72338	7.18	. 965775	1.25	58
03	259662	4.68	268885	5.20	. 71907	7.18	965700	1.27	57
04	259943	4.68	269197	5.20	. 71476	7.17	965624	1.27	56
05	260224	4.68	269509	5.20	. 71046	7.17	965548	1.25	55
06	260505	4.67	269821	5.20	. 70616	7.13	965473	1.27	54
07	260785	4.68	270133	5.20	. 70188	7.12	965397	1.27	53
08	. 261066	4.68	270445	5.20	. 69761	7.10	965321	1.27	52
09	.261347	4.68	. 270757	5.20	.69335	7.10	965245	1.27	51
10	0.261628	4.67	0.271069	5.22	3.68909	7.07	0.965169	1.27	50
11	. 261908	4.68	. 271382	5.20	. 68485	7.07	.965093	1.28	49
12	262189	4.68	271694	5.20	.68061	7.05	.965016	1.27	48
13	262470	4.68	.272006	5.22	.67638	7.02	964940	1.27	47
14	262751	4.67	.272319	5.20	.67217	7.02	964864	1.28	46
15	263031	4.68	.272631	5.22	. 66796	7.00	.964787	1.27	45
16	263312	4.67	. 272944	5.20	. 66376	6.98	964711	1.28	44
17	263592	4.68	. 273256	5.22	. 65957	6.98	.964634	1.28	43
18	263873	4.68	.273569	5.22	.65538	6.95	.964557	1.27	42
19	264154	4.67	. 273882	5.20	. 65121	6.93	.964481	1.28	41
20	0.264434	4.68	0.274194	5.22	3.64705	6.93	0.964404	1.28	40
21	264715	4.67	.274507	5.22	.64289	6.92	. 964327	1.28	39
22	264995	4.68	.274820	5.22	.63874	6.88	. 964250	1.28	38
23	265276	4.67	.275133	5.22	.63461	6.88	. 964173	1.30	37
24	.265556	4.68	. 275446	5.22	. 63048	6.87	.964095	1.28	36
25	265837	4.67	275759	5.22	. 62636	6.87	. 964018	1.28	35
26	266117	4.67	276072	5.22	. 62224	6.83	. 963941	1.30	34
27	266397	4.68	. 276385	5.22	.61814	6.82	.963863	1.28	33
28	. 266678	4.67	.276698	5.22	.61405	6.82	.963786	1.30	32
29	266958	4.67	277011	5.23	.60996	6.80	.963708	1.30	31
30	0.267238	4.68	0.277325	5.22	3.60588	6.78	0.963630	1.28	30
31	. 267519	4.67	. 277638	5.22	. 60181	6.77	.963553	1.30	29
32	267799	4.67	277951	5.23	.59775	6.75	. 963475	1.30	28
33	. 268079	4.67	278265	5.22	.59370	6.73	.963397	1.30	27
34	268359	4.68	.278578	5.22	. 58966	6.73	.963319	1.30	26
35	268640	4.67	. 278891	5.23	.58562	6.70	. 963241	1.30	25
36	268920	4.67	279205	5.23	.58160	6.70	963163	1.32	24
37	269200	4.67	. 279519	5.22	. 57758	6.68	.963084	1.30	23
38	269480	4.67	. 279832	5.23	. 57357	6.67	963006	1.30	22
39	269760	4.67	280146	5.23	.56957	6.67	.962928	1.32	21
40	0.270040	4.67	0.280460	5.22	3.56557	6.63	0.962849	1.32	20
41	. 270320	4.67	. 280773	5.23	56159	6.63	962770	1.30	19
42	270600	4.67	. 281087	5.23	.55761	6.62	. 962692	1.32	18
43	270880	4.67	.281401	5.23	. 55364	6.60	. 962613	1.32	17
44	.271160	4.67	.281715	5.23	. 54968	6.58	. 962534	1.32	16
45	271440	4.67	. 282029	5.23	.54573	6.57	. 962455	1.32	15
46	271720	4.67	. 282343	5.23	.54179	6.57	. 962376	1.32	14
47	272000	4.67	. 282657	5.23	. 53785	6.53	. 962297	1.32	13
48	272280	4.67	. 282971	5.25	. 53393	6.53	.962218	1.32	12
49	272560	4.67	. 283286	5.23	.53001	6.53	.962139	1.33	11
50	0.272840	4.67	0.283600	5.23	3.52609	6.50	0.962059	1.32	10
51	273120	4.67	. 283914	5.25	. 52219	6.50	.961980	1.32	09
52	273400	4.65	. 284229	5.23	51829	6.47	.961901	1.33	08
53	273679	4.67	. 284543	5.23	51441	6.47	.961821	1.33	07
54	273959	4.67	.284857	5.25	51053	6.45	.961741	1.32	06
55	274239	4.67	.285172	5.25	. 50666	6.45	.961662	1.33	05
56	274519	4.65	.285487	5.23	50279	6.42	.961582	1.33	04
57	. 274798	4.67	.285801	5.25	. 49894	6.42	.961502	1.33	03
58	. 275078	4.67	. 286116	5.25	.49509	6.40	.961422	1.33	02
59	275358	4.65	286431	5.23	.49125	6.40	.961342	1.33	01
60	0.275637		0.286745		3.48741		0.961262		00
	Sin	d. "	Tan	d. "	Cot	d."	Cos	d."	

Table A-1. Natural trigonometric functions (continued)

Table A-1. Natural trigonometric functions (continued)

		d."	Tan	d."	Cot	d."	Cos	d."	
00^{\prime}	0.292372	4.63	0.305731	5.30	3.27085	5.67	0.956305	1.42	60^{\prime}
01	292650	4.63	. 306049	5.30	26745	5.65	956220	1.43	59
02	292928	4.63	306367	5.30	26406	5.65	956134	1.42	58
03	293203	7.63	306685	5.30	26067	5.63	956049	1.42	57
04	293484	4.63	307003	5.32	25729	5.62	955964	1.42	56
05	293762	4.63	. 307322	5.30	. 25392	5.62	955879	1.43	55
06	294040	4.63	307640	5.32	. 25055	5.60	955793	1.43	54
07	294318	4.63	307959	5.30	24719	5.60	955707	1.42	53
08	294596	4.63	. 308277	5.32	. 24383	5.57	955622	1.43	52
09	294874	4.63	.308596	5.30	. 24049	5.58	.955536	1.43	51
10	0.295152	4.63	0.308914	5.32	3.23714	5.55	0.955450	1.43	50
11	295430	4.63	. 309233	5.32	23381	5.55	955364	1.43	49
12	295708	4.63	309552	5.30	. 23048	5.55	955278	1.43	48
13	295986	4.63	309870	5.32	22715	5.52	. 955192	1.43	47
14	296264	4.63	310189	5.32	. 22384	5.52	. 955106	1.43	46
15	296542	4.62	310508	5.32	. 22053	5.52	955020	1.43	45
16	. 296819	4.63	. 310827	5.32	. 21722	5.50	. 954934	1.45	44
17	. 297097	4.63	. 311146	5.32	. 21392	5.48	. 954847	1.43	43
18	297375	4.63	311465	5.32	21063	5.48	984761	1.45	42
19	297653	4.62	.311784	5.33	. 20734	5.47	. 954674	1.43	41
20	0.297930	4.63	0.312104	5.32	3.20406	5.45	0.954588	1.45	40
21	. 298208	4.63	.312423	5.32	. 20079	5.45	. 954501	1.45	39
22	298486	4.62	312742	5.33	. 19752	5.43	. 954414	1.45	38
23	. 298763	4.63	313062	5.32	. 19426	5.43	. 954327	. 145	37
24	. 299041	4.62	.313381	5.32	.19100	5.42	. 954240	1.45	36
25	. 299318	4.63	313700	5.33	.18775	5.40	. 954153	1.45	35
26	. 299596	4.62	314020	5.33	.18451	5.40	. 954066	1.45	34
27	. 299873	4.63	314340	5.32	18127	5.38	953979	1.45	33
28	300151	4.62	314659	5.33	. 17804	5.38	. 953892	1.47	32
29	300428	4.63	314979	5.33	.17481	5.37	. 953804	1.45	31
30	0.300706	4.62	0.315299	5.33	3.17159	5.35	0.953717	1.47	30
31	. 300983	4.63	.315619	5.33	. 16838	5.35	. 953629	1.45	29
32	.301261	4.62	315939	5.32	.16517	5.33	. 953542	1.47	28
33	. 301538	4.62	. 316258	5.33	.16197	5.33	953454	1.47	27
34	.301815	4.63	. 316578	5.35	. 15877	5.32	953366	1.45	26
35	. 302093	4.62	. 316899	5.33	. 15558	5.30	953279	1.47	25
36	. 302370	4.62	. 317219	5.33	15240	5.30	. 953191	1.47	24
37	. 302647	4.62	. 317539	5.33	. 14922	5.28	953103	1.47	23
38	. 302924	4.63	.317859	5.33	14605	5.28	.953015	1.48	22
39	. 303202	4.62	.318179	5.35	. 14288	5.27	. 952926	1.47	21
40	0.303479	4.62	0.318500	5.33	3.13972	5.27	0.952838	1.47	20
41	. 303756	4.62	318820	5.35	. 13656	5.25	952750	1.48	19
42	. 304033	4.62	. 319141	5.33	.13341	5.23	. 952661	1.47	18
43	. 304310	4.62	.319461	5.35	. 13027	5.23	. 952573	1.48	17
44	304587	4.62	. 319782	5.35	12713	5.22	. 952484	1.47	16
45	. 304864	4.62	. 320103	5.33	.12400	5.22	. 952396	1.48	15
46	305141	4.62	. 320423	5.35	. 12087	5.20	.952307	1.48	14
47	305418	4.62	. 320744	5.35	. 17775	5.18	. 952218	1.48	13
48	.305695	4.62	. 321065	5.35	. 11464	5.18	. 952129	1.48	12
49	. 305972	4.62	. 321386	5.35	. 11153	5.18	. 952040	1.48	11
50	0.306249	4.62	0.321707	5.35	3.10842	5.17	0.951951	1.48	10
51	. 306526	4.62	. 322028	5.35	. 10532	5.15	. 951862	1.48	09
52	. 306803	4.62	. 322349	5.35	. 10223	5.15	. 951773	1.48	08
53	. 307080	4.62	. 322670	5.35	. 09914	5.13	. 951684	1.50	07
54	. 307357	4.60	. 322991	5.35	. 09606	5.13	.951594	1.48	06
55	. 307633	4.62	. 323312	5.37	. 09298	5.12	. 951505	1.50	05
56	.307910	4.62	. 323634	5.35	. 08991	5.10	. 951415	1.48	04
57	308187	4.62	323955	5.37	.08685	5.10	. 951326	1.50	03
58	308464	4.60	324277	5.35	. 08379	5.10	. 951236	1.50	02
59	308740	4.62	324598	5.37	. 08073	5.08	. 951146	1.48	01
60	0.309017		0.324920		3.07768		0.951057		00

Table A-1. Natural trigonometric functions (continued)

	18°								
	Sin	d. "	Tan	d."	Cot	d."	Cos	d. "	
00'	0.309017	4.62	0.324920	5.35	3.07768	5.07	0.951057	1.50	60^{\prime}
01	. 309294	4.60	. 325241	5.37	.07464	5.07	. 950967	1.50	59
02	309570	4.62	. 325563	5.37	.07160	5.05	. 950877	1.52	58
03	.309847	4.60	. 325885	5.37	.06857	5.05	. 950786	1.50	57
04	.310123	4.62	. 326207	5.35	.06554	5.03	. 950696	1.50	56
05	.310400	4.60	. 326528	5.37	. 06252	5.03	. 950606	1.50	55
06	.310676	4.62	. 326850	5.37	. 05950	5.02	. 950516	1.52	54
07	. 310953	4.60	.327172	5.37	. 05649	5.00	.950425	1.50	53
08	. 311229	4.62	.327494	5.38	. 05349	5.00	. 950335	1.52	52
09	.311506	4.60	.327817	5.37	. 05049	5.00	. 950244	1.50	51
10	0.311782	4.62	0.328139	5.37	3.04749	4.98	0.950154	1.52	50
11	.312059	4.60	.328461	5.37	. 04450	4.97	.950063	1.52	49
12	.312335	4.60	328783	5.38	. 04152	4.97	. 949972	1.52	48
13	.312611	4.62	.329106	5.37	.03854	4.97	.949881	1.52	47
14	.312888	4.60	.329428	5.38	. 03556	4.93	. 949790	1.52	46
15	.313164	4.60	329751	5.37	. 03260	4.95	.949699	1.52	45
16	.313440	4.60	330073	5.38	. 02963	4.93	. 949608	1.52	44
17	.313716	4.60	. 330396	5.37	.02667	4.92	. 949517	1.53	43
18	. 313992	4.62	330718	5.38	. 02372	4.92	. 949425	1.52	42
19	.314269	4.60	.331041	5.38	.02077	4.90	940334	1.52	41
20	0.314545	4.60	0.331364	5.38	3.01783	4.90	0.949243	1.53	40
21	.314821	4.60	.331687	5.38	. 01489	4.88	949151	1.53	39
22	.315097	4.60	.332010	5.38	.01196	4.88	. 949059	1.52	38
23	.315373	4.60	332333	5.38	.00903	4.87	. 948968	1.53	37
24	. 315649	4.60	. 332656	5.38	. 00611	4.87	948876	1.53	36
25	.315925	4.60	. 332979	5.38	.00319	4.85	948784	1.53	35
26	.316201	4.60	. 333302	5.38	00028	4.83	948692	1.53	34
27	.316477	4.60	. 333625	5.40	2.99738	4.85	. 948600	1.53	33
28	.316753	4.60	. 333949	5.38	99447	4.82	.948508	1.53	32
29	.317029	4.60	. 334272	5.38	99158	4.83	.948416	1.53	31
30	0.317305	4.58	0.334595	5.40	2.98868	4.80	0.948324	1.55	30
31	.317580	4.60	. 334919	5.38	. 98580	4.80	. 948231	1.53	29
32	.317856	4.60	.335242	5.40	98292	4.80	.948139	1.55	28
33	.318132	4.60	. 335566	5.40	98004	4.78	.948046	1.53	27
34	.318408	4.60	.335890	5.38	.97717	4.78	. 947954	1.55	26
35	.318684	4.58	. 336213	5.40	.97430	4.77	.947861	1.55	25
36	.318959	4.60	.336537	5.40	.97144	4.77	. 947768	1.53	24
37	.319235	4.60	. 336861	5.40	. 96858	4.75	.947676	1.55	23
38	.319511	4.58	.337185	5.40	.96573	4.75	.947583	1.55	22
39	319786	4.60	. 337509	5.40	. 96288	4.73	.947490	1.55	21
40	0.320062	4.58	0.337833	5.40	2.96004	4.72	0.947397	1.55	20
41	.320337	4.60	. 338157	5.40	.95721	4.73	.947304	1.57	19
42	.320613	4.60	.338481	5.42	.95437	4.70	.947210	1.55	18
43	. 320889	4.58	. 338806	5.40	95155	4.72	.947117	1.55	17
44	.321164	4.58	. 339130	5.40	. 94872	4.68	. 947024	1.57	16
45	.321439	4.60	. 339454	5.42	.94591	4.70	. 946930	1.55	15
46	.321715	4.58	.339779	5.40	.94309	4.68	. 946837	1.57	14
47	.321990	4.60	. 340103	5.42	. 94028	4.67	.946743	1.57	13
48	.322266	4.58	. 340428	5.40	. 93748	4.67	. 946649	1.57	12
49	.322541	4.58	.340752	5.42	. 93468	4.65	.946555	1.55	11
50	0.322816	4.60	0.341077	5.42	2.93189	4.65	0.946462	1.57	10
51	323092	4.58	.341402	5.42	92910	4.63	. 946368	1.57	09
52	.323367	4.58	. 341727	5.42	.92632	4.63	. 946274	1.57	08
53	. 323642	4.58	.342052	5.42	92354	4.63	.946180	1.58	07
54	323917	4.60	. 342377	5.42	. 92076	4.62	.946085	1.57	06
55	.324193	4.58	.342702	5.42	. 91799	4.60	.945991	1.57	05
56	324468	4.58	.343027	5.42	.91523	4.62	. 945897	1.58	04
57	.324743	4.58	.343352	5.42	.91246	4.58	.945802	1.57	03
58	.325018	4.58	. 343677	5.42	.90971	4.58	. 945708	1.58	02
59	325293	4.58	.344002	5.43	.90696	4.58	.945613	1.57	01
60	0.325568		0.344328		2.90421		0.945519		00
	Sin	d. "	Tan	d."	Cot	d. "	Cos	d."	

A-20

Table A-1. Natural trigonometric functions (continued)

Table A-1. Natural trigonometric functions (continued)

	20°								
	Sin	d."	Tan	d."	Cot	d. ${ }^{\text {] }}$	Cos	d. "	
00'	0.342020	4.55	0.363970	5.50	2.747477	41.40	0.939693	1.67	60^{\prime}
01	. 342293	4.57	364300	5.48	. 744993	41.35	. 939593	1.67	59
02	342567	4.55	364629	5.50	. 742512	41.28	939493	1.65	58
03	. 342840	4.55	364959	5.48	. 740035	41.22	. 939394	1.67	57
04	.343113	4.57	.365288	5.50	. 737562	41.15	939294	1.67	56
05	.343387	4.55	.365618	5.50	. 735093	41.08	. 939194	1.67	55
06	. 343660	4.55	365948	5.50	732628	41.02	939094	1.67	54
07	.343933	4.55	.366278	5.50	730167	40.95	938994	1.67	53
08	. 344206	4.55	366608	5.50	. 727710	40.88	. 938894	1.67	52
09	.344479	4.55	366938	5.50	. 725257	40.82	938794	1.67	51
10	0.344752	4.55	0.367268	5.50	2.722808	40.77	0.938694	1.68	50
11	.345025	4.55	.367598	5.50	. 720362	40.70	.938593	1.67	49
12	. 345298	4.55	.367928	5.52	.717920	40.62	. 938493	1.67	48
13	. 345571	4.55	.368259	5.50	. 715483	40.57	. 938393	1.68	47
14	.345844	4.55	.368589	5.50	.713049	40.50	. 938292	1.68	46
15	.346117	4.55	.368919	5.52	.710619	40.45	.938191	1.67	45
16	.346390	4.55	.369250	5.52	.708192	40.37	.938091	1.68	44
17	. 346663	4.55	.369581	5.52	.705770	40.32	. 937990	1.68	43
18	.346936	4.53	.369911	5.52	.703351	40.25	.937889	1.68	42
19	347208	4.55	. 370242	5.52	.700936	40.18	.937788	1.68	41
20	0.347481	4.55	0.370573	5.52	2.698525	40.12	0.937687	1.68	40
21	.347754	4.55	.370904	5.52	. 696118	40.05	. 937586	1.68	39
22	348027	4.53	. 371235	5.52	. 693715	40.00	.937485	1.70	38
23	.348299	4.55	.371566	5.52	.691315	39.93	. 937383	1.68	37
24	.348572	4.55	. 371897	5.52	688919	39.87	. 937282	1.68	36
25	. 348845	4.53	. 372228	5.52	686527	39.82	.937181	1.70	35
26	. 349117	4.55	. 372559	5.52	.684138	39.73	937079	1.70	34
27	. 349390	4.53	372890	5.53	681754	39.70	936977	1.68	33
28	. 349662	4.55	. 373222	5.52	679372	39.62	. 936876	1.70	32
29	.349935	4.53	.373553	5.53	.676995	39.57	.936774	1.70	31
30	0.350207	4.55	0.373885	5.52	2.674621	39.48	0.936672	1.70	30
31	. 350480	4.53	. 374216	5.53	.672252	39.45	936570	1.70	29
32	. 350752	4.55	. 374548	5.53	669885	39.37	. 936468	1.70	28
33	.351025	4.53	.374880	5.52	667523	39.32	936366	1.70	27
34	.351297	4.53	.375211	5.53	.665164	39.25	.936264	1.70	26
35	. 351569	4.55	.375543	5.53	.662809	39.20	936162	1.70	25
36	. 351842	4.53	.375875	5.53	.660457	39.13	936060	1.72	24
37	. 352114	4.53	. 376207	5.53	.658109	39.07	935957	1.70	23
38	. 352386	4.53	.376539	5.55	.655765	39.02	935855	1.72	22
39	352658	4.55	.376872	5.53	.653424	38.95	935752	1.70	21
40	0.352931	4.53	0.377204	5.53	2.651087	38.90	0.935650	1.72	20
41	. 353203	4.53	. 377536	5.55	.648753	38.83	.935547	1.72	19
42	.353475	4.53	. 377869	5.53	.646423	38.77	.935444	1.72	18
43	. 353747	4.53	. 378201	5.55	.644097	38.72	. 935341	1.72	17
44	.354019	4.53	. 378534	5.53	. 641774	38.65	.935238	1.72	16
45	354291	4.53	. 378866	5.55	. 639455	38.60	.935135	1.72	15
46	. 354563	4.53	.379199	5.55	.637139	38.53	.935032	1.72	14
47	. 354835	4.53	. 379532	5.53	.634827	38.47	.934929	1.72	13
48	.355107	4.53	. 379864	5.55	632519	38.42	. 934826	1.73	12
49	.355379	4.53	.380197	5.55	. 630214	38.37	.934722	1.72	11
50	0.355651	4.53	0.380530	5.55	2.627912	38.30	0.934619	1.73	10
51	. 355923	4.52	.380863	5.55	.625614	38.28	.934515	1.72	09
52	. 356194	4.53	.381196	5.57	.623320	38.18	. 934412	1.73	08
53	. 356466	4.53	.381530	5.55	.621029	38.13	. 934308	1.73	07
54	. 356738	4.53	.381863	5.55	.618741	38.07	.934204	. 1.72	06
55	357010	4.52	.382196	5.57	.616457	38.00	.934101	1.73	05
56	. 357281	4.53	. 382530	5.55	.614177	37.95	. 933997	1.73	04
57	. 357553	4.53	. 382863	5.55	.611900	37.90	. 933893	1.73	03
58	.357825	4.52	.383197	5.55	.609626	37.83	933789	1.73	02
59	.358096	4.53	.383530	5.57	.607356	37.78	.933685	1.75	01
60	0.358368		0.383864		2.605089		0.933580		00
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	

A-22

Table A-1. Natural trigonometric functions (continued)

	21°								
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	
00'	0.358368	4.53	0.383864	5.57	2.605089	37.72	0.933580	1.73	60°
01	. 358640	4.52	. 384198	5.57	. 602826	37.67	. 933476	1.73	59
02	. 358911	4.53	. 384532	5.57	. 600566	37.62	. 933372	1.75	58
03	. 359183	4.52	. 384866	5.57	. 598309	37.55	. 933267	1.73	57
04	359454	4.52	. 385200	5.57	. 596056	37.48	. 933168	1.75	56
05	. 359725	4.52	.385534	5.57	. 593807	37.43	933058	1.73	55
06	. 359997	4.52	. 385868	5.57	. 591561	37.38	932954	1.75	54
07	. 360268	4.53	. 386202	5.57	. 589318	37.33	932849	1.75	53
08	. 360540	4.52	. 386536	5.58	587078	37.27	. 932744	1.75	52
09	. 360811	4.52	. 386871	5.57	. 584842	37.22	.932639	1.75	51
10	0.361082	4.52	0.387205	5.58	2.582609	37.15	932534	1.75	50
11	.361353	4.53	. 387540	5.57	. 580380	37.10	. 932429	1.75	49
12	. 361625	4.52	387874	5.58	. 578154	37.05	. 932324	1.75	48
13	. 361896	4.52	. 388209	5.58	. 575931	36.98	. 932219	1.77	47
14	. 362167	4.52	. 388544	5.58	. 573712	36.93	. 932113	1.75	46
15	. 362438	4.52	. 388879	5.58	. 571496	36.88	. 932008	1.77	45
16	. 362709	4.52	. 389214	5.58	569283	36.82	. 931902	1.75	44
17	. 362980	4.52	. 389549	5.58	567074	36.78	931797	1.77	43
18	. 363251	4.52	. 389884	5.58	. 564867	36.70	. 931691	1.75	42
19	. 363522	4.52	. 390219	5.58	. 562665	36.67	. 931586	1.77	41
20	0.363793	4.52	0.390554	5.58	2.560465	36.60	0.931480	1.77	40
21	364064	4.52	. 390889	5.60	. 558269	36.55	. 931374	1.77	39
22	.364335	4.52	. 391225	5.58	. 556076	36.50	. 931268	1.77	38
23	. 364606	4.52	. 391560	5.60	. 553886	36.45	. 931162	1.77	37
24	. 364877	4.52	. 391896	5.58	. 551699	36.38	. 931056	1.77	36
25	. 365148	4.50	. 392231	5.60	. 549516	36.33	930950	1.78	35
26	.365418	4.52	. 392567	5.60	. 547336	36.28	930843	1.77	34
27	. 365689	4.52	. 392903	5.60	. 545459	36.23	. 930737	1.77	33
28	. 365960	4.52	. 393239	5.58	. 542985	36.17	. 930631	1.78	32
29	.366231	4.50	. 393574	5.60	. 540815	36.12	. 930524	1.77	31
30	0.366501	4.52	0.393910	5.62	2.538648	36.07	0.930418	1.78	30
31	. 366772	4.50	. 394247	5.60	. 536484	36.02	. 930311	1.78	29
32	. 367042	4.52	. 394583	5.60	534323	35.97	. 930204	1.78	28
33	. 367313	4.52	. 394919	5.60	532165	35.90	. 930097	1.78	27
34	. 367584	4.50	. 395255	5.62	530011	35.85	. 929990	1.77	26
35	. 367854	4.52	. 395592	5.60	. 527860	35.80	. 929884	1.80	25
36	. 368125	4.50	. 395928	5.62	. 525712	35.75	. 929776	1.78	24
37	. 368395	4.50	. 396265	5.60	. 523567	35.70	. 929669	1.78	23
38	. 368665	4.52	. 396601	5.62	. 521425	35.65	. 929562	1.78	22
39	. 368936	4.50	. 396938	5.62	.519286	35.58	. 929455	1.78	21
40	0.369206	4.50	0.397275	5.60	2.517151	35.55	929348	1.80	20
41	. 369476	4.52	. 397611	5.62	. 515018	35.48	. 929240	1.78	19
42	. 369747	4.50	397948	5.62	. 512889	35.43	929133	1.80	18
43	. 370017	4.50	. 398285	5.62	. 510763	35.38	929025	1.80	17
44	. 370287	4.50	. 398622	5.63	. 508640	35.33	. 928917	1.78	16
45	. 370557	4.52	. 398960	5.62	. 506520	35.28	. 928810	1.80	15
46	. 370828	4.50	. 399297	5.62	. 504403	35.23	. 928702	1.80	14
47	. 371098	4.50	. 399634	5.62	. 502289	35.18	. 928594	1.80	13
48	. 371368	4.50	. 399971	5.63	. 500178	35.12	. 928486	1.80	12
49	. 371638	4.50	. 400309	5.62	.498071	35.08	.928378	1.80	11
50	0.371908	4.50	0.400646	5.63	2.495966	35.02	0.928270	1.82	10
51	. 372178	4.50	. 400984	5.63	.493865	34.98	. 928161	1.80	09
52	. 372448	4.50	. 401322	5.63	.491766	34.92	. 928053	1.80	08
53	. 372718	4.50	. 401660	5.62	.489671	34.88	. 927945	1.82	07
54	. 372988	4.50	. 401997	5.63	. 487578	34.82	. 927836	1.80	06
55	. 373258	4.50	. 402335	5.63	. 485489	34.78	927728	1.82	05
56	. 373528	4.48	. 402673	5.63	. 483402	34.72	. 927619	1.82	04
57	. 373797	4.50	. 403011	5.65	. 481319	34.67	. 927510	1.80	03
58	. 374067	4.50	. 403350	5.63	. 479239	34.63	. 927402	1.82	02
59	.374337	4.50	. 403688	5.63	.477161	34.57	. 927293	1.82	01
60	0.374607		0.404026		2.475087		0.927184		00
	Cos	$\mathrm{d}^{\prime \prime}$	Cot	d"	Tan	d"	Sin	d"	

Table A-1. Natural trigonometric functions (continued)

22°								
Sin	d."	Tan	d."	Cot	d."	Cos	d."	
0.374607	4.48	0.404026	5.65	2.475087	34.53	0.927184	1.82	60^{\prime}
. 374876	4.50	. 404365	5.63	. 473015	34.47	. 927075	1.82	59
. 375146	4.50	. 404703	5.65	. 470947	34.42	. 926966	1.82	58
. 375416	4.48	. 405042	5.63	. 468882	34.38	. 926857	1.83	57
. 375685	4.50	. 405380	5.65	.466819	34.32	. 920747	1.82	56
. 375955	4.48	. 405719	5.65	. 464760	34.28	. 926638	1.82	55
. 376224	4.50	. 406058	5.65	. 462703	34.23	. 926529	1.83	54
. 376494	4.48	. 406397	5.65	. 460649	34.17	. 926419	1.82	53
. 376763	4.50	. 406736	5.65	. 458599	34.13	. 926310	1.83	52
. 377033	4.48	. 407075	5.65	. 456551	34.08	.926200	1.83	51
0.377302	4.48	0.407414	5.65	2.454506	34.03	0.926090	1.83	50
. 377571	4.50	. 407753	5.65	. 452464	33.98	. 925980	1.82	49
. 377841	4.48	. 408092	5.67	.450425	33.93	. 925871	1.83	48
. 378110	4.48	. 408432	5.65	.448389	33.88	. 925761	1.83	47
.378379	4.50	. 408771	5.67	446356	33.83	. 925651	1.83	46
. 378649	4.48	. 409111	5.65	444326	33.80	. 925541	1.85	45
. 378918	4.48	. 409450	5.67	442298	33.73	.925430	1.83	44
. 379187	4.48	.409790	5.67	. 440274	33.70	.925320	1.83	43
. 379456	4.48	.410130	5.67	. 438252	33.65	. 925210	1.85	42
. 379725	4.48	.410470	5.67	.436233	33.60	. 925099	1.83	41
0.379994	4.48	0.410810	5.67	2.434217	33.55	0.924989	1.85	40
. 380263	4.48	.411150	5.67	.432204	33.50	. 924878	1.83	39
. 380532	4.48	.411490	5.67	. 430194	33.47	. 924768	1.85	38
. 380801	4.48	.411830	5.67	.428186	33.40	. 924657	1.85	37
381070	4.48	.412170	5.68	. 426182	33.37	. 924546	1.85	36
. 381339	4.48	.412511	5.67	.424180	33.32	. 924435	1.85	35
. 381608	4.48	.412851	5.68	.422181	33.27	. 924324	1.85	34
. 381877	4.48	.413192	5.67	.420185	33.22	. 924213	1.85	33
. 382146	4.48	. 413532	5.68	.418192	33.18	. 924102	1.85	32
.382415	4.47	413873	5.68	416201	33.12	. 923991	1.85	31
0.382683	4.48	0.414214	5.67	2.414214	33.08	. 923880	1.87	30
. 382952	4.48	.414554	5.68	.412229	33.03	. 923768	1.85	29
. 383221	4.48	.414895	5.68	.410247	33.00	. 923657	1.87	28
383490	4.47	.415236	5.68	. 408267	32.93	. 923545	1.85	27
. 383758	4.48	.415557	5.70	.406291	32.90	923434	1.87	26
. 384027	4.47	.415919	5.68	.404317	32.85	923322	1.87	25
384295	4.48	416260	5.68	. 402346	32.82	923210	1.87	24
. 384564	4.47	416601	5.70	. 400377	32.75	923098	1.87	23
. 384832	4.48	416943	5.68	. 398412	32.72	922986	1.85	22
.385101	4.47	. 417284	5.70	.396449	32.67	922875	1.88	21
0.385369	4.48	0.417626	5.68	2.394489	32.62	0.922762	1.87	20
. 385638	4.47	417967	5.70	. 392532	32.58	. 922650	1.87	19
385906	4.47	418309	5.70	. 390577	32.53	. 922538	1.87	18
386174	4.48	.418651	5.70	. 388625	32.48	. 922426	1.88	17
. 386443	4.47	418993	5.70	. 386676	32.45	. 922313	1.87	16
. 386711	4.47	.419335	5.70	. 384726	32.38	. 922201	1.88	15
. 386979	4.47	.419677	5.70	. 382786	32.37	. 922088	1.87	14
. 387247	4.48	. 420019	5.70	. 380844	32.30	. 921976	1.88	13
. 387516	4.47	.420361	5.72	. 378906	32.27	. 921863	1.88	12
. 387784	4.47	. 420704	5.70	.376970	32.22	. 921750	1.87	11
0.388052	4.47	0.421046	5.72	2.375037	32.17	0.921638	1.88	10
. 388320	4.47	421389	5.70	. 373107	32.13	.921525	1.88	09
. 388588	4.47	.421731	5.72	. 371179	32.08	.921412	1.88	08
. 388856	4.47	. 422074	5.72	. 369254	32.03	.921299	1.90	07
. 389124	4.47	. 422417	5.70	. 367332	32.00	.921185	1.88	06
. 389392	4.47	. 422759	5.72	. 365412	31.95	. 921072	1.88	05
. 389660	4.47	.423102	5.72	. 363495	31.92	.920959	1.90	04
. 389928	4.47	. 423445	5.72	. 361580	31.87	. 920845	1.88	03
. 390196	4.45	. 423788	5.73	. 359668	31.82	. 920732	1.90	02
. 390463	4.47	.424132	5.72	. 357759	31.78	. 920618	1.88	01
0.390731		0.424475		2.355852		0.920505		00
Cos	d."	Cot	d."	Tan	d. "	Sin	d."	

A-24

Table A-1. Natural trigonometric functions (continued)

	Sin	d."	Tan	d."	Cot	d."	Cos	d."	
00'	0.390731	4.47	0.424475	5.72	2.355852	31.73	0.920505	1.90	60^{\prime}
01	390999	4.47	. 424818	5.73	.353495	31.68	. 920391	1.90	59
02	. 391267	4.45	. 425162	5.72	. 352047	31.65	. 920277	1.88	58
03	391534	4.47	.425505	5.73	. 350148	31.60	. 920164	1.90	57
04	391802	4.47	.425849	5.72	. 348252	31.57	. 920050	1.90	56
05	. 392070	4.45	. 426192	5.73	. 346192	31.52	. 919936	1.92	55
06	. 392337	4.47	.426536	5.73	. 344467	31.47	. 919821	1.90	54
07	. 392605	4.45	. 426880	5.73	342579	31.43	. 919707	1.90	53
08	. 392872	4.47	. 427224	5.73	. 340693	31.40	. 919593	1.90	52
09	. 393140	4.45	.427568	5.73	.338809	31.33	. 919479	1.92	51
10	0.393407	4.47	0.427912	5.73	2.336929	31.32	0.919364	1.90	50
11	. 393675	4.45	.428256	5.75	. 335050	31.25	. 919250	1.92	49
12	. 393942	4.45	.428601	5.73	. 333175	31.22	. 919135	1.90	48
13	. 394209	4.47	. 428945	5.73	. 331302	31.18	. 919021	1.92	47
14	. 394477	4.45	. 429289	5.75	. 329431	31.13	. 918906	1.92	46
15	. 394744	4.45	. 429634	5.75	. 327563	31.08	. 918791	1.92	45
16	.395011	4.45	. 429979	5.73	. 325698	31.05	. 918676	1.92	44
17	.395278	4.47	430323	5.75	323835	31.02	. 918561	1.92	43
18	.395546	4.45	. 430668	5.75	. 321974	30.97	. 918446	1.92	42
19	.395813	4.45	.431013	5.75	. 320116	30.92	. 918331	1.92	41
20	0.396080	4.45	0.431358	5.75	2.318261	30.88	0.918216	1.92	40
21	. 396347	4.45	. 431703	5.75	.316408	30.85	. 918101	1.92	39
22	. 396614	4.45	. 432048	5.75	. 314557	30.80	. 917986	1.93	38
23	. 396881	4.45	. 432393	5.77	.312709	30.75	. 917870	1.92	37
24	. 397148	4.45	. 432739	5.75	. 310864	30.72	. 917755	1.93	36
25	. 397415	4.45	. 433084	5.77	. 309021	30.68	. 917639	1.93	35
26	. 397682	4.45	. 433430	5.75	. 307180	30.63	. 917523	1.92	34
27	. 397949	4.43	. 433775	5.77	. 305342	30.60	. 917408	1.93	33
28	. 398215	4.45	. 434121	5.77	. 303506	30.55	. 917292	1.93	32
29	. 398482	4.45	.434467	5.75	.301673	30.50	. 917176	1.93	31
30	0.398749	4.45	0.434812	5.77	2.299843	30.48	0.917060	1.93	30
31	. 399016	4.45	. 435158	5.77	298014	30.43	916944	1.93	29
32	. 399283	4.43	435504	5.77	. 296188	30.38	. 916828	1.93	28
33	. 393549	4.45	.435850	5.78	294365	30.35	. 916712	1.95	27
34	. 399816	4.43	436197	5.77	292544	30.30	. 916595	1.93	26
35	. 400082	4.45	436543	5.77	. 290726	30.27	. 916479	1.93	25
36	400349	4.45	436889	5.78	288910	30.23	. 916363	1.95	24
37	400616	4.43	437236	5.77	. 287096	30.18	. 916246	1.93	23
38	400882	4.45	437582	5.78	. 285285	30.15	. 916130	1.95	22
39	401149	4.43	. 437929	5.78	. 283476	30.12	.916013	1.95	21
40	0.401415	4.43	0.438276	5.77	2.281669	30.07	0.915896	1.95	20
41	. 401681	4.45	. 438622	5.78	. 279865	30.02	. 915779	1.93	19
42	.401948	4.43	438969	5.78	278064	30.00	. 915663	1.95	18
43	402214	4.43	. 439316	5.78	. 276264	29.95	. 915546	1.95	17
44	402480	4.45	. 439663	5.80	. 274467	29.90	915429	1.97	16
45	.402747	4.43	. 440011	5.78	. 272673	29.87	. 915311	1.95	15
46	.403013	4.43	. 440358	5.78	. 270881	29.83	. 915194	1.95	14
47	. 403279	4.43	. 440705	5.80	. 269091	29.78	915077	1.95	13
48	403545	4.43	. 441053	5.78	. 267304	29.77	914960	1.97	12
49	.403811	4.45	.441400	5.80	. 265518	29.70	. 914842	1.95	11
50	0.404078	4.43	. 441748	5.78	2.263736	29.68	0.914725	1.97	10
51	. 404344	4.43	. 442095	5.80	. 261955	29.63	. 914607	1.95	09
52	.404610	4.43	.442443	5.80	. 260177	29.58	. 914490	1.97	08
53	. 404876	4.43	.442791	5.80	. 258402	29.57	. 914372	1.97	07
54	. 405142	4.43	.443139	5.80	. 256628	29.52	. 914254	1.97	06
55	.405408	4.42	.443487	5.80	. 254.857	29.47	.914136	1.97	05
56	. 405673	4.43	.443835	5.80	. 253089	29.45	. 914018	1.97	04
57	405939	4.43	. 444183	5.82	251322	29.40	.913900	1.97	03
58	406205	4.43	.444532	5.80	249558	29.37	. 913782	1.97	02
59	406471	4.43	.444880	5.82	. 247796	29.32	. 913664	1.98	01
60	0.406737		0.445229		2.246037		0.913545		00
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	

Table A-1. Natural trigonometric functions (continued)

	24°								
	Sin	d."	Tan	d."	Cot	d."	Cos	d. ${ }^{\prime}$	
00'	0.406737	4.42	0.445229	5.80	2.246037	29.28	0.913545	1.97	60^{\prime}
01	. 407002	4.43	. 445577	5.82	. 244280	29.25	. 913427	1.97	59
02	407268	4.43	. 445926	5.82	242525	29.22	.913309	1.98	58
03	407534	4.42	. 446275	5.82	. 240772	29.17	.913190	1.97	57
04	. 407799	4.43	446624	5.82	239022	29.13	. 913072	1.98	56
05	408065	4.42	446973	5.82	. 237274	29.10	. 912953	1.98	55
06	408330	4.43	447322	5.82	235528	29.05	. 912834	1.98	54
07	408596	4.42	447671	5.82	233785	29.03	912715	1.98	53
08	. 408861	4.43	. 448020	5.82	232043	28.98	.912596	1.98	52
09	. 409127	4.42	.448369	5.83	230304	28.93	.912477	1.98	51
10	0.409392	4.43	0.448719	5.82	2.228568	28.92	0.912358	1.98	50
11	.409658	4.42	. 449068	5.83	226833	28.87	. 912239	1.98	49
12	409923	4.42	. 449418	5.83	. 225101	28.83	912120	1.98	48
13	410188	4.43	449768	5.82	223371	28.80	. 912001	2.00	47
14	. 410454	4.42	.450117	5.83	. 221643	28.75	. 911 88:	1.98	46
15	. 410719	4.42	.450467	5.83	. 219918	28.73	. 911762	1.98	48
16	. 410984	4.42	.450817	5.83	. 218194	28.68	.911643	2.00	44
17	.411249	4.42	.451167	5.83	. 216473	28.65	.911523	2.00	43
18	.411514	4.42	.451517	5.85	. 214754	28.60	.911403	1.98	42
19	.411779	4.43	. 451868	5.83	. 213038	28.58	.911284	2.00	41
20	0.412045	4.42	0.452218	5.83	2.211323	28.53	0.911164	2.00	40
21	.412310	4.42	.452568	5.85	209611	28.50	. 911044	2.00	39
22	412575	4.42	452919	5.83	207901	28.47	. 910924	2.00	38
23	. 412840	4.40	.453269	5.85	206193	28.42	910804	2.00	37
24	.413104	4.42	. 453620	5.85	204488	28.40	. 910684	2.02	36
25	.413369	4.42	. 453971	5.85	. 202784	28.35	. 910563	2.00	35
26	.413634	4.42	.454322	5.85	201083	28.32	910443	2.00	34
27	.413899	4.42	. 454673	5.85	. 199384	28.28	910323	2.02	33
28	.414164	4.42	. 455024	5.85	. 197687	28.25	910202	2.00	32
29	.414429	4.40	.455375	5.85	. 195992	28.20	910082	2.02	31
30	0.414693	4.42	0.455726	5.87	2.194300	28.18	0.909961	2.00	30
31	. 414958	4.42	.456078	5.85	. 192609	28.13	. 909841	2.02	29
32	.415223	4.40	456429	5.87	. 190921	28.10	. 909720	2.02	28
33	.415487	4.42	456781	5.85	. 189235	28.07	. 909599	2.02	27
34	.415752	4.40	457132	5.87	. 187551	28.03	. 909478	2.02	26
35	.416016	4.42	.457484	5.87	. 185869	28.00	. 909357	2.02	25
36	.416281	4.40	457836	5.87	. 184189	27.95	. 909236	2.02	24
37	.416545	4.42	. 458188	5.87	. 182512	27.93	. 909115	2.02	23
38	416810	4.40	. 458540	5.87	. 180836	27.88	. 908994	2.03	22
39	.417074	4.40	458892	5.87	179163	27.85	. 908872	2.02	21
40	0.417338	4.42	0.459244	5.87	2.177492	27.82	0.908751	2.02	20
41	. 417603	4.40	. 459596	5.88	. 175823	27.78	. 908630	2.03	19
42	417867	4.40	459949	5.87	. 174156	27.75	. 908508	2.02	18
43	.418131	4.42	. 460301	5.88	.172491	27.72	. 908387	2.03	17
44	.418396	4.40	. 460654	5.87	. 170828	27.67	. 908265	2.03	16
45	418660	4.40	. 461006	5.88	. 169168	27.65	. 908143	2.03	15
46	418924	4.40	.461359	5.88	167509	27.60	908021	2.03	14
47	.419188	4.40	.461712	5.88	. 165853	27.58	. 907899	2.03	13
48	.419452	4.40	. 462065	5.88	. 164198	27.53	. 907777	2.03	12
49	.419716	4.40	.462418	5.88	. 162546	27.50	. 907655	2.03	11
50	0.419980	4.40	0.462771	5.88	2.160896	27.47	. 907533	2.03	10
51	. 420244	4.40	. 463124	5.90	. 159248	27.43	. 907411	2.03	09
52	.420508	4.40	. 463478	5.88	. 157602	27.40	907289	2.05	08
53	420772	4.40	. 463831	5.90	. 155958	27.37	. 907166	2.03	07
54	421036	4.40	. 464185	5.88	. 154316	27.33	907044	2.03	06
55	421300	4.38	. 464538	5.90	. 152676	27.30	. 906922	2.05	05
56	.421563	4.40	. 464892	5.90	. 151038	27.27	. 906799	2.05	04
57	421827	4.40	. 465246	5.90	. 149402	27.43	. 906676	2.03	03
58	.422091	4.40	. 465600	5.90	. 147768	27.18	. 906554	2.05	02
59	.422355	4.38	. 465954	5.90	. 146402	27.17	. 906431	2.05	01
60	0.422618		0.466308		2.144507		0.906308		00
	Sin	d."	Tan	d."	Cot	d."	Cos	d. ${ }^{\prime}$	

Table A-1. Natural trigonometric functions (continued)

	25°								
	Sin	d. "	Tan	d."	Cot	d. "	Cos	d."	
00'	0.422618	4.40	0.466308	5.90	2.144507	27.13	0.906308	2.05	60*
0.	. 422882	4.38	466662	5.90	.142879	27.08	.906185	2.05	59
02	423145	4.40	467016	5.92	141254	27.07	. 906062	2.05	58
03	.423 .109	4.40	167371	5.90	. 139630	27.02	905939	2.07	57
04	.423673	4.38	467725	5.92	138009	27.00	. 905815	2.05	56
05	.423936	4.38	.468080	5.90	136389	26.97	. 905692	2.05	55
06	424199	4.40	468434	5.92	.134771	26.92	.905569	2.07	54
07	424463	4.38	468789	5.92	133156	26.90	. 905445	2.05	53
08	.424726	4.40	469144	5.92	. 131542	26.85	. 905322	2.07	52
09	.424990	4.38	469499	5.92	129931	26.83	.905198	2.05	51
10	0.425253	4.38	0.469854	5.92	2.128321	26.78	0.905075	2.07	50
11	425516	4.38	470209	5.92	. 126714	26.77	. 904951	2.07	49
12	.425779	4.38	470564	5.93	.125108	26.72	. 904827	2.07	48
13	.426042	4.40	470920	5.92	.123505	26.70	.904703	2.07	47
14	.426306	4.38	471275	5.93	.121903	26.67	.904579	2.07	46
15	426569	4.38	471631	5.92	. 120303	26.62	904455	2.07	45
16	.426832	4.38	471986	5.93	.118706	26.60	.904331	2.07	44
17	.427095	4.38	472342	5.93	.117110	26.57	. 904207	2.07	43
18	.427358	4.38	.472698	5.93	. 115516	26.52	904083	2.08	42
19	.427621	4.38	.473054	5.93	.113925	26.50	903958	2.07	41
20	0.427884	4.38	0.473410	5.93	2.112335	26.47	0.903834	2.08	40
21	.428147	4.38	.473766	5.93	.110747	26.43	.903709	2.07	39
22	.428410	4.37	.474122	5.93	.109161	26.40	.903585	2.08	38
23	428672	4.38	. 474478	5.95	.107577	26.37	. 903460	2.08	37
24	.428935	4.38	.474835	5.93	.105995	26.33	.903335	2.08	36
25	429198	4.38	475191	5.95	. 104415	26.30	. 903210	2.07	35
26	.429461	4.37	. 475548	5.95	. 102837	26.27	. 903086	2.08	34
27	.429723	4.38	475905	5.95	.101261	26.25	. 902961	2.08	33
28	.429986	4.38	. 476262	5.95	.099686	26.20	.902836	2.10	32
29	430249	4.37	.476619	5.95	.098114	26.17	.902710	2.08	31
30	0.430511	4.38	0.476976	5.95	2.096544	26.15	0.902585	2.08	30
31	.430774	4.37	.477333	5.95	. 094975	26.12	.902460	2.08	29
32	.431036	4.38	.477690	5.95	.093408	26.07	.902335	2.10	28
33	.431299	4.37	.478047	5.97	.091844	26.05	. 902209	2.08	27
34	.431561	4.37	.478405	5.95	.090281	26.02	. 902084	2.10	26
35	.431823	4.38	.478762	5.97	.088720	25.98	. 901958	2.08	25
36	.432086	4.37	.479120	5.95	.087161	25.95	. 901833	2.10	24
37	.432348	4.37	.479477	5.97	.085604	25.92	.901707	2.10	23
38	.432610	4.38	.479835	5.97	. 084049	25.90	.901581	2.10	22
39	432873	4.37	480193	5.97	.082495	25.85	.901455	2.10	21
40	0.433135	4.37	.480551	5.97	2.080944	25.83	.901329	2.10	20
41	.433397	4.37	. 480909	5.97	.079394	25.78	.901203	2.10	19
42	.433659	4.37	.481267	5.98	.077847	25.77	.901077	2.10	19
43	433921	4.37	.481626	5.97	.076301	25.73	. 900951	2.10	17
44	434183	4.37	.481984	5.98	. 074757	25.70	. 900825	2.12	16
45	.434445	4.37	.482343	5.97	.073215	25.68	.900698	2.10	15
46	.434707	4.37	482701	5.98	.071674	25.63	.900572	2.12	14
47	434969	4.37	483060	5.98	.070136	25.62	. 900445	2.10	13
48	435231	4.37	.483419	5.98	.068599	25.57	.900319	2.12	12
49	435493	4.37	483778	5.98	.067065	25.55	.900192	2.12	11
50	0.435755	4.37	0.484137	5.98	2.065532	25.52	0.900065	2.10	10
51	.436017	4.35	.484496	5.98	.064001	25.48	. 899939	2.12	09
52	.436278	4.37	484855	5.98	.062472	25.47	. 899812	2.12	08
53	436540	4.37	485214	6.00	. 060944	25.42	. 899685	2.12	07
54	.436802	4.35	485574	5.98	.059419	25.40	899558	2.12	06
55	.437063	4.37	485933	6.00	.057895	25.37	. 899431	2.12	05
56	.437325	4.37	486293	6.00	. 056373	25.33	899304	2.13	04
57	. 437587	4.35	486653	6.00	. 054853	25.30	899176	2.12	03
58	.437848	4.37	487013	6.00	.053335	25.28	899049	2.12	02
59	.438110	4.35	487373	6.00	.051818	25.23	899922	2.13	01
60	0.438371		0.487733		2.050304		0.898794		00
	Sin	d."	Tan	d. "	Cot	d."	Cos	d."	

Table A-1. Natural trigonometric functions (continued)

Table A-1. Natural trigonometric functions (continued)

Table A-1. Natural trigonometric functions (continued)

	28°								
	Sin	d."	Tan	d."	Cot	d. "	Cos	d. ${ }^{\text {a }}$	
00'	0.469472	4.27	0.531709	6.23	1.880726	21.98	0.882948	2.28	60^{\prime}
01	.469728	4.28	. 532083	6.22	.879407	21.95	.882811	2.28	59
02	.469985	4.28	. 532456	6.22	. 878090	21.93	. 882674	2.27	58
03	. 470242	4.28	.532829	6.23	. 876774	21.92	.882538	2.28	57
04	.470499	4.27	. 533203	6.23	. 875459	21.90	. 882401	2.28	56
05	.470755	4.28	533577	6.22	. 874145	21.85	. 882264	2.28	55
06	.471012	4.27	. 533950	6.23	872834	21.85	.882127	2.28	54
07	.471268	4.28	. 534324	6.23	871523	21.82	.881990	2.28	53
08	.471525	4.28	534698	6.23	. 870214	21.80	881853	2.30	52
09	.471782	4.27	535072	6.23	. 868906	21.77	.881715	2.28	51
10	0.472038	4.27	0.535446	6.25	1.867600	21.75	0.881578	2.28	50
11	. 472294	4.28	.535821	6.23	. 866295	21.72	.881441	2.30	49
12	.472551	4.27	. 536195	6.25	. 864992	21.70	.881303	2.28	48
13	.472807	4.27	. 536570	6.25	. 863690	21.67	.881166	2.30	47
14	.473063	4.28	. 536945	6.23	.862390	21.65	.881028	2.28	46
15	473320	4.27	. 537319	6.25	.861091	21.63	. 880891	2.30	45
16	473576	4.27	. 537694	6.25	.859793	21.62	. 880753	2.30	44
17	473832	4.27	. 538069	6.27	. 858496	21.57	880615	2.30	43
18	474088	4.27	.538445	6.25	.857202	21.57	. 880477	2.30	42
19	474344	4.27	.538820	6.25	. 855908	21.53	. 880339	2.30	41
20	0.474600	4.27	0.539195	6.27	1.854616	21.52	0.880201	2.30	40
21	.474856	4.27	. 539571	6.25	. 853325	21.48	.880063	2.30	39
22	.475112	4.27	.539946	6.27	.852036	21.47	.879925	2.30	43
23	.475368	4.27	. 540322	6.27	. 850748	21.45	.879787	2.30	37
24	. 475624	4.27	.540698	6.27	.849461	21.42	. 879649	2.32	36
25	475880	4.27	.541074	6.27	. 848176	21.40	. 879510	2.30	35
26	.476136	4.27	.541450	6.27	.846892	21.37	. 879372	2.32	34
27	476392	4.25	.541826	6.28	.845610	21.35	. 879233	2.30	33
28	.476647	4.27	. 542203	6.27	. 844329	21.33	. 879095	2.32	32
29	.476903	4.27	.542579	6.28	. 843049	21.30	. 878956	2.32	31
30	0.477159	4.25	0.542956	6.27	1.841771	21.28	0.878817	2.32	30
31	477414	4.27	.543332	6.28	840494	21.27	. 878678	2.32	29
32	477670	4.25	.543709	6.28	. 839218	21.23	. 878539	2.32	28
33	.477925	4.27	. 544086	6.28	. 837944	21.22	. 878400	2.32	27
34	.478181	4.25	.544463	6.28	. 836671	21.18	.878261	2.32	26
35	.478436	4.27	.544840	6.30	.835400	21.17	. 878122	2.32	25
36	478692	4.25	. 545218	6.28	.834130	21.15	. 877983	2.32	24
37	.478947	4.27	.545595	6.30	. 832861	21.12	.877844	2.33	23
38	479203	4.25	. 545973	6.28	.831594	21.12	.877704	2.32	22
39	.479458	4.25	. 546350	6.30	. 830327	21.07	.877565	2.33	21
40	0.479713	4.25	0.546728	6.30	1.829063	21.07	0.877425	2.32	20
41	. 479968	4.25	.547106	6.30	.827799	21.03	877286	2.33	19
42	. 480223	4.27	. 547484	6.30	. 826537	21.00	.877146	2.33	18
43	. 480479	4.25	.547862	6.30	825277	21.00	.877006	2.32	17
44	. 480734	4.25	. 548240	6.32	. 824017	20.97	876867	2.33	16
45	. 480989	4.25	.548619	6.30	.822759	20.93	876727	2.33	15
46	.481244	4.25	.548997	6.32	821503	20.93	876587	2.33	14
47	.481499	4.25	.549376	6.32	. 820247	20.90	876447	2.33	13
48	.481754	4.25	.549755	6.32	. 818993	20.87	.876307	2.33	12
49	.482009	4.23	.550134	6.32	817741	20.87	.876167	2.35	11
50	0.482263	4.25	0.550513	6.32	1.816489	20.83	0.876026	2.33	10
51	.482518	4.25	.550892	6.32	. 815239	20.82	.875886	2.33	09
52	.482773	4.25	. 551271	6.32	.813990	20.78	.875746	2.35	08
53	.483028	4.23	.551650	6.33	.812743	20.77	.875605	2.33	07
54	.483282	4.25	.552030	6.32	.811497	20.75	.875465	2.35	06
55	.483537	4.25	.552409	6.33	. 810252	20.72	.875324	2.35	05
56	.483792	4.23	.552789	6.33	.809009	20.72	. 875183	2.35	04
57	.484046	4.25	.553169	6.33	.807766	20.67	.875042	2.33	03
58	. 484301	4.23	.553549	6.33	.806526	20.67	.874902	2.35	02
59	.484555	4.25	.553929	6.33	.805285	20.63	.874761	2.35	01
60	0.484810		0.554309		1.804048		0.874620		00
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	

Table A-1. Natural trigonometric functions (continued)

	29°								
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	
00'	0.484810	4.23	0.554309	6.33	1.804048	20.62	-. 874620	2.35	60^{\prime}
01	.485064	4.23	. 554689	6.35	. 802811	20.60	. 874479	2.35	59
02	.485318	4.25	. 555070	6.33	801575	20.57	.874338	2.37	58
03	.485573	4.23	. 555450	6.35	. 800341	20.55	. 874196	2.35	57
04	. 485827	4.23	555831	6.35	. 799108	20.53	. 874055	2.35	56
05	. 486081	4.23	556212	6.35	797876	20.52	. 873914	2.37	55
06	486335	4.25	. 556593	6.35	. 796645	20.48	. 874772	2.35	54
07	486590	4.23	. 556974	6.35	. 795416	20.47	. 873631	2.37	53
08	486844	4.23	557355	6.35	794188	20.43	873489	2.37	52
09	487098	4.23	. 557736	6.37	. 792962	20.43	873347	2.35	51
10	0.487352	4.23	0.558118	6.35	1.791736	20.40	0.873206	2.37	50
11	487606	4.23	558499	6.37	. 790512	20.38	. 873064	2.37	49
12	487860	4.23	558881	6.37	. 789289	20.35	. 872922	2.37	48
13	488114	4.22	559263	6.37	. 788068	20.35	. 872780	2.37	47
14	488367	4.23	. 559645	6.37	. 786847	20.32	. 872638	2.37	46
15	. 488621	4.23	. 560027	6.37	. 785628	20.28	. 872496	2.37	45
16	488875	4.23	560409	6.37	. 784411	20.28	872354	2.37	44
17	489129	4.22	. 560791	6.38	. 783194	20.25	872212	2.38	43
18	489382	4.23	. 561174	6.37	. 781979	20.23	872069	2.37	42
19	489636	4.23	. 561556	6.38	. 780765	20.22	871927	2.38	41
20	0.489890	4.22	0.561939	6.38	1.779552	20.18	0.871784	2.37	40
21	. 490143	4.23	. 562322	6.38	. 778341	20.17	871642	2.38	39
22	.490397	4.22	562705	6.38	. 777131	20.15	871499	2.37	38
23	. 490650	4.23	563088	6.38	. 775922	20.13	871357	2.38	37
24	490904	4.22	. 563471	6.38	. 774714	20.10	. 871214	2.38	36
25	491157	4.23	. 563854	6.40	. 773508	20.10	871071	2.38	35
26	.491411	4.22	. 564238	6.38	. 772302	20.07	. 870928	2.38	34
27	. 491664	4.22	. 564621	6.40	. 771098	20.03	. 870785	2.38	33
28	.491917	4.22	565005	6.40	. 769896	20.03	. 870642	2.38	32
29	.492170	4.23	. 565389	6.40	. 768694	20.00	. 870499	2.38	31
30	0.492424	4.22	0.565773	6.40	1.767494	19.98	0.870356	2.40	30
31	. 492677	4.22	. 566157	6.40	. 766295	19.97	. 870212	2.38	29
32	.492930	4.22	. 566541	6.40	. 765097	19.93	. 870069	2.38	28
33	493183	4.22	. 566925	6.42	. 763901	19.93	. 869926	2.40	27
34	493436	4.22	. 567310	6.40	. 762705	19.90	. 869782	2.38	26
35	493689	4.22	. 567694	6.42	. 761511	19.88	. 869639	2.40	25
36	. 493942	4.22	. 568079	6.42	. 760318	19.85	. 869495	2.40	24
37	. 494195	4.22	. 568464	6.42	. 759127	19.85	. 869351	2.40	23
38	. 494448	4.20	. 568849	6.42	. 757936	19.82	. 869207	2.38	22
39	.494700	4.22	569234	6.42	. 756747	19.80	. 869064	2.40	21
40	0.494953	4.22	0.569619	6.42	1.755559	19.78	0.868920	2.40	20
41	. 495206	4.22	. 570004	6.43	. 754372	19.75	. 868776	2.40	19
42	. 495459	4.20	. 570390	6.43	. 753187	19.75	. 868632	2.42	18
43	. 495711	4.22	. 570776	6.42	. 752002	19.72	. 868487	2.40	17
44	. 495964	4.22	. 571161	6.43	. 750819	19.70	. 868343	2.40	16
45	. 496217	4.20	. 571547	6.43	. 749637	19.68	. 868199	2.42	15
46	. 496469	4.22	. 571933	6.43	. 748456	19.65	. 868054	2.40	14
47	. 496722	4.20	. 572319	6.43	. 747277	19.65	. 867910	2.42	13
48	. 496974	4.20	. 572705	6.45	. 746098	19.62	. 867765	2.40	12
49	. 497226	4.22	573092	6.43	. 744921	19.60	. 867621	2.42	11
50	0.497479	4.20	0.573478	6.45		19.57	0.867476	2.42	10
51	. 497731	4.20	. 573865	6.45	. 742571	19.57	. 867331	2.40	09
52	. 497983	4.22	. 574252	6.43	. 741397	19.53	. 867187	2.42	08
53	. 498236	4.20	. 574638	6.47	. 740225	19.53	. 867042	2.42	07
54	. 498488	4.20	. 575026	6.45	. 739053	19.50	. 866897	2.42	06
55	498740	4.20	. 575413	6.45	. 737883	19.48	. 866752	2.42	05
56	. 498992	4.20	. 575800	6.45	. 736714	19.45	. 866607	2.43	04
57	. 499244	4.20	. 576187	6.47	. 735547	19.45	. 866461	2.42	03
58	. 499496	4.20	. 576575	6.45	. 734380	19.42	. 866316	2.42	02
59	499748	4.20	. 576962	6.47	. 733215	19.40	.866171	2.43	01
60	0.500000		0.577350		1.732051		0.866025		00
	Sin	d."	Tan	d. ${ }^{\text {a }}$	Cot	d."	Cos	d."	

Table A-1. Natural trigonometric functions (continued)

	30°								
	Sin	d. "	Tan	d."	Cot	d."	Cos	d. "	
00'	0.500000	4.20	0.577350	6.47	1.732051	19.38	0.866025	2.42	60^{\prime}
01	. 500252	4.20	.577738	6.47	. 730888	19.37	. 865880	2.43	59
02	. 500504	4.20	.578126	6.47	. 729726	19.35	865734	2.42	58
03	.500756	4.18	. 578514	6.48	. 728565	19.32	. 865589	2.43	57
04	.501007	4.20	. 578903	6.47	. 727406	19.30	. 865443	2.42	56
05	501259	4.20	579291	6.48	. 726248	19.28	.865297	2.43	55
06	. 501511	4.18	.579680	6.47	.725091	19.27	.865151	2.42	54
07	. 501762	4.20	. 580068	6.48	. 723935	19.25	.865006	2.43	53
08	. 502014	4.20	. 580457	6.48	. 722780	19.23	. 864860	2.45	52
09	. 502266	4.18	580846	6.48	.721626	19.20	.864713	2.43	51
10	0.502517	4.20	0.581235	6.50	1.720474	19.20	0.864567	2.43	50
11	. 502769	4.18	. 581625	6.48	. 719322	19.17	. 864421	2.43	49
12	. 503020	4.18	.582014	6.48	. 718172	19.15	. 864275	2.45	48
13	. 503271	4.20	.582403	6.50	.717023	19.13	. 864128	2.43	47
14	. 503523	4.18	.582793	6.50	.715875	19.12	. 863982	2.43	46
15	. 503774	4.18	. 583183	6.50	.714728	19.08	. 863836	2.45	45
16	. 504025	4.18	.583573	6.50	.713583	19.08	.863689	2.45	44
17	.504276	4.20	. 583963	6.50	.712438	19.05	. 863542	2.43	43
18	. 504528	4.18	. 584353	6.50	.711295	19.03	. 863396	2.45	42
19	.504779	4.18	.584743	6.52	.710153	19.02	. 863249	2.45	41
20	0.505030	4.18	0.585134	6.50	1.709012	19.00	0.863102	2.45	40
21	. 505281	4.18	.585524	6.52	. 707872	18.98	. 862955	2.45	39
22	. 505532	4.18	.585915	6.52	. 706733	18.97	. 862808	2.45	38
23	. 505783	4.18	.586306	6.52	. 705595	18.93	. 862661	2.45	37
24	. 506034	4.18	.586697	6.52	. 704459	18.93	. 862514	2.47	36
25	. 506285	4.17	.587088	6.52	. 703323	18.90	. 862366	2.45	35
26	. 506535	4.18	.587479	6.52	. 702189	18.88	. 862219	2.45	34
27	.506786	4.18	.587870	6.53	. 701056	18.87	. 862072	2.47	33
28	.507037	4.18	.588262	6.52	.699924	18.85	. 861924	2.45	32
29	. 507288	4.17	.588653	6.53	.698793	18.83	. 861777	2.47	31
30	0.507538	4.18	0.589045	6.53	1.697663	18.82	0.861629	2.47	30
31	.507789	4.18	.589437	6.53	.696534	18.78	.861481	2.45	29
32	508040	4.17	. 589829	6.53	.695407	18.78	. 861334	2.47	28
33	508290	4.18	. 590221	6.53	. 694280	18.75	.861186	2.47	27
34	508541	4.17	.590613	6.55	.693155	18.73	.861038	2.47	26
35	508791	4.17	.591006	6.53	.692031	18.72	.860890	2.47	25
36	.509041	4.18	.591398	6.55	.690908	18.70	. 860742	2.47	24
37	. 509292	4.17	.591791	6.55	.689786	18.68	. 860594	2.47	23
38	. 509542	4.17	. 592184	6.55	.688665	18.67	. 860446	2.48	22
39	509792	4.18	.592577	6.55	.687545	18.65	860297	2.47	21
40	0.510043	4.17	0.592970	6.55	1.686426	18.63	0.860149	2.47	20
41	.510293	4.17	.593363	6.57	.685308	18.60	. 860001	2.48	19
42	.510543	4.17	.593757	6.55	.684192	18.58	859852	2.47	18
43	510793	4.17	.594150	6.57	.683077	18.58	859704	2.48	17
44	.511043	4.17	. 594544	6.55	.681962	18.55	. 859555	2.48	16
45	.511293	4.17	. 594937	6.57	. 680849	18.53	. 859406	2.47	15
46	.511543	4.17	.595331	6.57	.679737	18.52	. 859258	2.48	14
47	.511793	4.17	.595725	6.58	.678626	18.50	. 859109	2.48	13
48	.512043	4.17	.596120	6.57	.677516	18.48	. 858960	2.48	12
49	.512293	4.17	.596514	6.57	.676407	18.47	.858811	2.48	11
50	0.512543	4.15	0.596908	6.58	1.675299	18.45	0.858662	2.48	10
51	.512792	4.17	.597303	6.58	.674192	18.43	0.858513	2.48	09
52	. 513042	4.17	. 597698	6.58	.673086	18.40	. 858364	2.50	08
53	. 513292	4.15	.598093	6.58	.671982	18.40	. 858214	2.48	07
54	.513541	4.17	. 598488	6.58	. 670878	18.37	. 858065	2.50	06
55	. 513791	4.15	. 598883	6.58	.669776	18.37	. 857915	2.48	05
56	. 514040	4.17	. 599278	6.60	.668674	18.32	.857766	2.50	04
57	. 514290	4.15	.599674	6.58	.667574	18.32	.857616	2.48	03
58	. 514539	4.17	. 600069	6.60	.666475	18.30	.857467	2.50	02
59	.514789	4.15	.600465	6.60	.665377	18.30	.857317	2.50	01
60	0.515038		0.600861		1.664279		0.857167		00
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	

A-32

Table A-1. Natural trigonometric functions (continued)

	31°								
	Sin	d."	Tan	d."	Cot	d."	Cos	d. ${ }^{\prime \prime}$	
00'	0.515038	4.15	0.600861	6.60	1.664279	18.27	0.857167	2.50	60^{\prime}
01	.515287	4.17	.601257	6.60	.663183	18.25	. 857017	2.48	59
02	.515537	4.15	.601653	6.60	. 662088	18.23	. 856868	2.50	58
03	.515786	4.15	.602049	6.60	. 660994	18.20	. 856718	2.52	57
04	.516035	4.15	.602445	6.62	.659902	18.20	856567	2.50	56
05	.516284	4.15	.602842	6.62	. 658810	18.18	. 856417	2.50	55
06	. 516533	4.15	.603239	6.60	.657719	18.17	856267	2.50	54
07	.516782	4.15	.603635	6.62	.656629	18.13	856117	2.52	53
08	.517031	4.15	.604032	6.62	.655541	18.13	. 855966	2.50	52
09	.517280	4.15	.604429	6.63	. 654453	18.12	855816	2.52	51
10	0.517529	4.15	0.604827	6.62	1.653366	18.08	0.855665	2.50	50
11	.517778	4.15	. 605224	6.63	.652281	18.08	.855515	2.52	49
12	.518027	4.15	.605622	6.62	. 651196	18.05	. 855364	2.50	48
13	518276	4.15	. 606019	6.63	.650113	18.05	. 855214	2.52	47
14	518525	4.13	.606417	6.63	.649030	18.02	. 855063	2.52	46
15	. 518773	4.15	.606815	6.63	.647949	18.00	.854912	2.52	45
16	. 519022	4.15	.607213	6.63	. 646869	18.00	.854761	2.52	44
17	. 519271	4.13	.607611	6.65	.645789	17.97	.854610	2.52	43
18	. 519519	4.15	.608010	6.63	.644711	17.95	.854459	2.52	42
19	. 519768	4.13	. 608408	6.65	.643634	17.93	.854308	2.53	41
20	0.520016	4.15	0.608807	6.63	1.642558	17.93	0.854156	2.52	40
21	. 520265	4.13	.609205	6.65	.641482	17.90	.854005	2.52	39
22	. 520513	4.13	.609604	6.65	.640408	17.88	. 853854	2.53	38
23	. 520761	4.15	.610003	6.67	.639335	17.87	. 853702	2.52	37
24	. 521010	4.13	.610403	6.65	.638263	17.85	. 853551	2.53	36
25	521258	4.13	.610802	6.65	.637192	17.83	.853399	2.52	35
26	. 521506	4.13	.611201	6.67	.636122	17.82	. 853248	2.53	34
27	. 521754	4.13	.611601	6.67	.635053	17.80	.853096	2.53	33
28	. 522002	4.15	.612001	6.67	.633985	17.78	.852944	2.53	32
29	522251	4.13	.612401	6.67	.632918	17.77	.852792	2.53	31
30	0.522499	4.13	0.612801	6.67	1.631852	17.75	0.852640	2.53	30
31	. 522747	4.13	. 613201	6.67	. 630787	17.73	.852488	2.53	29
32	. 522995	4.12	.613601	6.68	.629723	17.72	. 852336	2.53	28
33	. 523242	4.13	.614002	6.67	.628660	17.70	.852184	2.53	27
34	523490	4.13	.614402	6.68	.627598	17.68	. 852032	2.55	26
35	.523738	4.13	.614803	6.68	.626537	17.67	.851879	2.53	25
36	. 523986	4.13	.615204	6.68	.625477	17.65	.851727	2.55	24
37	. 524234	4.12	.615605	6.68	.624418	17.63	.851574	2.53	23
38	.524481	4.13	.616006	6.70	.623360	17.62	.851422	2.55	22
39	.524729	4.13	.616408	6.68	.622303	17.60	.851269	2.53	21
40	0.524977	4.12	0.616809	6.70	1.621247	17.58	0.851117	2.55	20
41	. 525224	4.13	.617211	6.70	.620192	17.57	. 850964	2.55	19
42	.525472	4.12	617613	6.70	. 619138	17.55	.850811	2.55	18
43	. 525719	4.13	.618015	6.70	.618085	17.53	.850658	2.55	17
44	. 525967	4.12	.618417	6.70	.617033	17.52	. 850505	2.55	16
45	. 526214	4.12	.618819	6.70	.615982	17.50	. 850352	2.55	15
46	.526461	4.13	.619221	6.72	.614932	17.48	.850199	2.55	14
47	. 526709	4.12	.619624	6.70	.613883	17.47	.850046	2.55	13
48	. 526956	4.12	.620026	6.72	.612835	17.45	.849893	2.57	12
49	527203	4.12	.620429	6.72	.611788	17.43	.849739	2.55	11
50	0.527450	4.12	0.620832	6.72	1.610742	17.42	0.849586	2.55	10
51	. 527697	4.12	.621235	6.72	. 609697	17.40	.849433	2.57	09
52	. 527944	4.12	.621638	6.73	.608653	17.40	. 849279	2.57	08
53	.528191	4.12	.622042	6.72	.607609	17.37	.849125	2.55	07
54	.528438	4.12	. 622445	6.73	.606567	17.35	. 848972	2.57	06
55	.528685	4.12	.622849	6.73	.605526	17.33	. 848818	2.57	05
56	. 528932	4.12	.623253	6.73	. 604486	17.33	. 848664	2.57	04
57	. 529179	4.12	. 623657	6.73	.603446	17.30	.848510	2.57	03
58	529426	4.12	.624061	6.73	.602408	17.28	.848356	2.57	02
59	.529673	4.10	.624465	6.73	601371	17.27	.848202	2.57	01
60	0.529919		0.624869		1.600335		0.848048		00
	Sin	d. "	Tan	d. ${ }^{\prime \prime}$	Cot	d."	Cos	d. "	

Table A-1. Natural trigonometric functions (continued)

	32°								
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	
00'	0.529919	4.12	0.624869	6.75	1.600335	17.27	0.848048	2.57	60^{\prime}
01	. 530166	4.12	. 625274	6.75	599299	17.23	. 847894	2.57	59
02	. 530413	4.10	.625679	6.73	598265	17.23	847740	2.58	58
03	. 530659	4.12	.626083	6.75	597231	17.20	847585	2.57	57
04	530906	4.10	.626488	6.77	596199	17.20	. 847431	2.58	56
05	531152	4.12	. 626894	6.75	. 595167	17.17	. 847276	2.57	55
06	. 531399	4.10	. 627299	6.75	594137	17.17	847122	2.58	54
07	. 531645	4.10	. 627704	6.77	. 593107	17.15	. 846967	2.57	53
08	.531891	4.12	. 628110	6.77	. 592078	17.12	. 846813	2.58	52
09	. 532138	4.10	.628516	6.75	. 591051	17.12	.846658	2.58	51
10	0.532384	4.10	0.628921	6.77	1.590024	17.10	0.846503	2.58	49
11	. 532630	4.10	. 629327	6.78	. 588998	17.08	. 846348	2.58	49
12	. 532876	4.10	. 629734	6.77	. 587973	17.07	846193	2.58	48
13	. 533122	4.10	. 630140	6.77	. 586949	17.05	846038	2.58	47
14	533368	4.12	. 630546	6.78	. 585926	17.03	845883	2.58	46
15	533615	4.10	630953	6.78	. 584904	17.02	845728	2.58	45
16	. 533861	4.08	631360	6.78	. 583883	17.00	. 845573	2.60	44
17	534106	4.10	631767	6.78	. 582863	16.98	. 845417	2.58	43
18	. 534352	4.10	. 632174	6.78	. 581844	16.98	845262	2.60	42
19	. 534598	4.10	632581	6.78	. 580825	16.95	.845106	2.58	41
20	0.534844	4.10	0.632988	6.80	1.579808	16.93	0.844951	2.60	40
21	. 535090	4.08	.633396	6.80	. 578792	16.93	. 844795	2.58	39
22	535335	4.10	.633804	6.78	577776	16.92	844640	2.60	38
23	535581	4.10	634211	6.80	576761	16.88	. 844484	2.60	37
24	535827	4.08	. 634619	6.80	575748	16.88	844328	2.60	36
25	536072	4.10	.635027	6.82	574735	16.87	. 844172	2.60	35
26	. 536318	4.08	.635436	6.80	573723	16.83	. 844016	2.60	34
27	. 536563	4.10	635844	6.82	. 572713	16.83	. 843860	2.60	33
28	536809	4.08	636253	6.80	. 571703	16.82	. 843704	2.60	32
29	537054	4.10	.636661	6.82	. 570694	16.80	. 843548	2.62	31
30	0.537300	4.08	0.637070	6.82	1.569686	16.80	0.843391	2.60	30
31	. 537545	4.08	. 637479	6.82	. 568678	16.77	. 843235	2.60	29
32	537790	4.08	. 637888	6.83	567672	16.75	. 843079	2.62	28
33	. 538035	4.10	. 638298	6.82	566667	16.75	. 842922	2.60	27
34	.538281	4.08	638707	6.83	565662	16.72	. 842766	2.62	26
35	. 538526	4.08	. 639117	6.83	. 564659	16.72	. 842609	2.62	25
36	538771	4.08	. 639527	6.83	. 563656	16.68	. 842452	2.60	24
37	539016	4.08	. 639937	6.83	. 562655	16.68	. 842296	2.62	23
38	539261	4.08	. 640347	6.83	. 561654	16.67	842139	2.62	22
39	. 539506	4.08	.640757	6.83	. 560654	16.65	. 841982	2.62	21
40	0.539751	4.08	0.641167	6.85	1.559655	16.63	0.841825	2.62	20
41	. 539996	4.07	. 641578	6.85	. 558657	16.62	. 841668	2.62	19
42	. 540240	4.08	. 641989	6.83	. 557660	16.60	841511	2.62	18
43	. 540485	4.08	.642399	6.85	. 556664	16.58	841354	2.63	17
44	. 540730	4.07	642810	6.87	. 555669	16.58	. 841196	2.62	16
45	. 540974	4.08	. 643222	6.85	. 554674	16.55	. 841039	2.62	15
46	. 541219	4.08	643633	6.85	. 553681	16.55	. 840882	2.63	14
47	. 541464	4.07	644044	6.87	. 552688	16.53	. 840724	2.62	13
48	. 541708	4.08	644456	6.87	. 551696	16.52	. 840567	2.63	12
49	. 541953	4.07	644868	6.87	. 550705.	16.50	. 840409	2.63	11
50	0.542197	4.08	0.645280	6.87	1.549715	16.48	0.840251	2.62	10
51	. 542442	4.07	. 645692	6.87	. 548726	16.47	. 840094	2.63	09
52	542686	4.07	646104	6.87	. 547738	16.45	. 839936	2.63	08
53	. 542930	4.07	. 646516	6.88	. 546751	16.43	. 839778	2.63	07
54	. 543174	4.08	. 646929	6.88	. 545765	16.43	. 839620	2.63	06
55	. 543419	4.07	. 647342	6.88	. 544779	16.40	. 839462	2.63	05
56	. 543663	4.07	. 647755	6.88	. 543795	16.40	. 839304	2.63	04
57	. 543907	4.07	. 648168	6.88	. 542811	16.38	. 839146	2.65	03
58	. 544151	4.07	. 648581	6.88	. 541828	16.37	. 838987	2.63	02
59	. 544395	4.07	. 648994	6.90	.540846	16.35	. 838829	2.63	01
60	0.544639		0.649408		1.539865		0.838671		00
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	

A-34

Table A-1. Natural trigonometric functions (continued)

	33°								
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	
00^{\prime}	0.544639	4.07	0.649408	6.88	1.539865	16.33	0.836671	2.65	60°
01	. 544883	4.07	. 649821	6.90	538885	16.33	. 838512	2.63	59
02	. 545127	4.07	650235	6.90	537905	16.30	. 838354	2.65	58
03	545371	4.07	. 650649	6.90	536927	16.30	838195	2.65	57
04	545615	4.05	. 651063	6.90	535949	16.27	838036	2.63	56
05	. 545858	4.07	. 651477	6.92	534973	16.27	837878	2.65	55
06	. 546102	4.07	. 651892	6.90	. 533997	16.25	837719	2.65	54
07	. 546346	4.05	. 652306	6.92	. 533022	16.23	. 837560	2.65	53
08	. 546589	4.07	. 652721	6.92	. 532048	16.22	. 837401	2.65	52
09	. 546833	4.05	.653136	6.92	531075	16.22	837242	2.65	51
10	0.547076	4.07	0.653551	6.92	1.530102	16.18	0.837083	2.65	50
11	. 547320	4.05	. 653966	6.93	529131	16.18	. 836924	2.67	49
12	. 547563	4.07	. 654382	6.92	. 528160	16.17	. 836764	2.65	48
13	. 547807	4.05	. 654797	6.93	527190	16.13	. 836605	2.65	47
14	. 548050	4.05	. 655213	6.93	526222	16.15	. 836446	2.67	46
15	. 548293	4.05	. 655629	6.93	525253	16.12	. 836286	2.65	45
16	. 548536	4.07	656045	6.93	524286	16.10	836127	2.67	44
17	. 548780	4.05	656461	6.93	523320	16.08	835967	2.67	43
18	. 549023	4.05	. 656877	6.95	522355	16.08	. 835807	2.65	42
19	. 549266	4.05	. 657294	6.93	. 521390	16.07	. 835648	2.67	41
20	0.549509	4.05	0.657710	6.95	1.520426	16.05	0.835488	2.67	40
21	. 549752	4.05	658127	6.95	. 519463	16.03	. 835328	2.67	39
22	. 549995	4.05	658544	6.95	518501	16.02	. 835168	2.67	38
23	550238	4.05	658961	6.97	. 517540	16.00	. 835008	2.67	37
24	. 550481	4.05	659379	6.95	516580	16.00	834848	2.67	36
25	550724	4.03	659796	6.97	. 515620	15.98	. 834688	2.68	35
26	550966	4.05	660214	6.95	514661	15.95	834527	2.67	34
27	551209	4.05	660631	6.97	513704	15.95	. 834367	2.67	33
28	551452	4.03	661049	6.97	512747	15.95	. 834207	2.68	32
29	551694	4.05	661467	6.98	511790	15.92	. 834046	2.67	31
30	0.551937	4.05	0.661886	6.97	1.510835	15.90	0.833886	2.68	30
31	. 552180	4.03	.662304	6.98	. 509881	15.90	. 833725	2.67	29
32	552422	4.03	. 662723	6.97	. 508927	15.88	. 833565	2.68	28
33	552664	4.05	. 663141	6.98	. 507974	15.87	. 833404	2.68	27
34	. 552907	4.03	. 663560	6.98	. 507022	15.85	833243	2.68	26
35	. 553149	4.05	663979	6.98	. 506071	15.83	. 833082	2.68	25
36	. 553392	4.03	. 664398	7.00	. 505121	15.82	. 832921	2.68	24
37	. 553634	4.03	. 664818	6.98	504172	15.82	832760	2.68	23
38	. 553876	4.03	. 665237	7.00	503223	15.80	832599	2.68	22
39	. 554118	4.03	.665657	7.00	. 502275	15.78	832438	2.68	21
40	0.554360	4.03	0.666077	7.00	1.501328	15.77	0.832277	2.70	20
41	. 554602	4.03	. 666497	7.00	. 500382	15.75	. 832115	2.68	19
42	. 554844	4.03	. 666917	7.00	. 499437	15.75	. 831954	2.68	18
43	. 555086	4.03	. 667337	7.02	. 499492	15.72	. 831793	2.70	17
44	. 555328	4.03	. 667758	7.02	. 497549	15.72	. 831631	2.68	16
45	. 555570	4.03	. 668179	7.00	496606	15.70	.831470	2.70	15
46	. 555812	4.03	. 668599	7.02	. 495664	15.68	.831308	2.70	14
47	. 556054	4.03	. 669020	7.03	. 494723	15.68	.831146	2.70	13
48	. 556296	4.02	. 669442	7.02	. 493782	15.65	. 830984	2.68	12
49	. 556537	4.03	. 669863	7.02	. 492843	15.65	. 830823	2.70	11
50	0.556779	4.03	0.670284	7.03	1.491904	15.63	0.830661	2.70	10
51	. 557021	4.02	. 670706	7.03	. 490966	15.62	. 830499	2.70	09
52	. 557262	4.03	. 671128	7.03	.490029	15.62	. 830337	2.72	08
53	. 557504	4.02	. 671550	7.03	.489092	15.58	. 830174	2.70	07
54	. 557745	4.03	. 671972	7.03	. 488157	15.58	. 830012	2.70	06
55	. 557987	4.02	. 672394	7.05	. 487222	15.57	. 829850	2.70	05
56	558228	4.02	. 672817	7.05	. 486288	15.55	. 829688	2.72	04
57	. 558469	4.02	. 673240	7.03	.485355	15.53	. 829525	2.70	03
58	. 558710	4.03	. 673662	7.05	. 484423	15.52	. 829363	2.72	02
59	. 558952	4.02	. 674085	7.07	. 483492	15.52	. 829200	2.70	01
60	0.559193		0.674509		1.482561		0.829038		00
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	

Table A-1. Natural trigonometric functions (continued)

	34°								
	Sin	d."	Tan	d."	Cot	d."	Cos	d. ${ }^{\text {a }}$	
00^{\prime}	0.559193	4.02	0.674509	7.05	1.482561	15.50	0.829038	2.72	60^{\prime}
01	. 559434	4.02	. 674932	7.05	.481631	15.48	. 828875	2.72	59
02	. 559675	4.02	. 675355	7.07	. 480702	15.47	. 828712	2.72	58
03	. 559916	4.02	. 675779	7.07	. 479774	15.47	. 828549	2.72	57
04	560157	4.02	. 676203	7.07	.478846	15.43	828386	2.72	56
05	. 560398	4.02	. 676627	7.07	. 477926	15.43	828223	2.72	55
06	. 560639	4.02	. 677051	7.07	. 476994	15.42	828060	2.72	54
07	. 560880	4.02	. 677475	7.08	476069	15.42	827897	2.72	53
08	. 561121	4.00	677900	7.07	. 475144	15.38	827734	2.72	52
09	. 561361	4.02	.678324	7.08	.474221	15.38	827571	2.73	51
10	0.561602	4.02	0.678749	7.08	1.473298	15.37	0.827407	2.72	50
11	. 561843	4.00	. 676174	7.08	. 472376	15.35	827244	2.72	49
12	. 562083	4.02	. 679599	7.10	.471455	15.33	. 827081	2.73	48
13	. 562324	4.00	. 680025	7.08	. 470535	15.33	. 826917	2.73	47
14	. 562564	4.02	. 680450	7.10	.469615	15.30	. 826753	2.72	46
15	. 562805	4.00	. 680876	7.10	468697	15.30	826590	2.73	45
16	. 563045	4.02	.681302	7.10	. 467779	15.28	. 826426	2.73	44
17	. 563286	4.00	. 681728	7.10	.466862	15.28	. 826262	2.73	43
18	563526	4.00	. 682154	7.10	. 465945	15.25	. 826098	2.73	42
19	. 563766	4.02	.682580	7.12	.465030	15.25	. 825934	2.73	41
20	0.564007	4.00	0.683007	7.10	1.464115	15.23	0.825770	2.73	40
21	. 564247	4.00	. 683433	7.12	.463201	15.23	.825606	2.73	39
22	. 564487	4.00	. 683860	7.12	.462287	15.20	. 825442	2.73	38
23	. 564727	4.00	. 684287	7.12	.461375	15.20	. 825278	2.75	37
24	. 564967	4.00	. 684714	7.13	. 460463	15.18	. 825113	2.73	36
25	. 565207	4.00	. 685142	7.12	. 459552	15.17	. 824949	2.73	35
26	. 565447	4.00	. 685569	7.13	. 458642	15.15	. 824785	2.75	34
27	. 565687	4.00	. 685997	7.13	.457733	15.15	. 824620	2.73	33
28	. 565927	3.98	. 686425	7.13	. 456824	15.13	. 824456	2.75	32
29	. 566166	4.00	. 686853	7.13	. 455916	15.12	.824291	2.75	31
30	0.566406	4.00	0.687281	7.13	1.455009	15.10	0.824126	2.75	30
31	. 566646	4.00	. 687709	7.15	.454103	15.10	. 823961	2.73	29
32	. 566886	3.98	. 688138	7.15	453197	15.08	823797	2.75	28
33	. 567125	4.00	. 688567	7.13	452292	15.07	. 823632	2.75	27
34	. 567365	3.98	. 688995	7.17	.451388	15.05	. 823467	2.75	26
35	. 567604	4.00	. 689425	7.15	.450485	15.03	. 823302	2.77	25
36	567844	3.98	. 689854	7.15	.449583	15.03	.823136	2.75	24
37	. 568083	4.00	. 690283	7.17	.448681	15.02	822971	2.75	23
38	568323	3.98	. 690713	7.17	.447780	15.00	. 822806	2.75	22
39	568562	3.98	. 691143	7.15	. 446880	15.00	. 822641	2.77	21
40	0.568801	3.98	0.691572	7.18	1.445980	14.98	0.822475	2.75	20
41	. 569040	4.00	692003	7.17	.445081	14.97	. 882310	2.77	19
42	. 569280	3.98	692433	7.17	. 444183	14.95	. 882144	2.77	18
43	. 569519	3.98	692863	7.18	. 443286	14.93	821978	2.75	17
44	. 569758	3.98	693294	7.18	.442390	14.93	821813	2.77	16
45	. 569997	3.98	693725	7.18	.441494	14.92	821647	2.77	15
46	. 570236	3.98	694156	7.18	. 440599	14.90	821481	2.77	14
47	570475	3.98	. 694587	7.18	.439705	14.90	821315	2.77	13
48	. 570714	3.97	. 695018	7.20	.438811	14.87	821149	2.77	12
49	. 570952	3.98	. 695450	7.18	.437919	14.87	820983	2.77	11
50	0.571191	3.98	0.695881	7.20	1.437027	14.85	0.820817	2.77	10
51	. 571430	3.98	. 696313	7.20	. 436136	14.85	820651	2.77	09
52	. 571669	3.97	. 696745	7.20	. 435245	14.83	820485	2.78	08
53	. 571907	3.98	. 697177	7.22	. 434355	14.82	820318	2.77	07
54	572146	3.97	. 697610	7.20	.433466	14.80	820152	2.78	06
55	. 572384	3.98	. 698042	7.22	. 432578	14.78	. 819985	2.77	05
56	. 572623	3.97	. 698475	7.22	. 431691	14.78	. 819819	2.78	04
57	. 572861	3.98	. 698908	7.22	.430804	14.77	. 819652	2.77	03
58	. 573100	3.97	. 699341	7.22	. 429918	14.75	. 819486	2.78	02
59	.573338	3.97	699774	7.23	.429033	14.75	. 819319	2.78	01
60	0.573576		0.700208		1.428148		0.819152		00
		d."	Tan	d."	Cot	d."	Cos	d."	

Table A-1. Natural trigonometric functions (continued)

	35°								
	Sin	d."	Tan	d. ${ }^{\text {a }}$	Cot	d. ${ }^{\text {" }}$	Cos	d."	
00^{\prime}	0.573576	3.98	0.700208	7.22	1.428148	14.73	0.819152	2.78	60^{\prime}
01	.573815	3.97	.700641	7.23	.427264	14.72	. 818985	2.78	59
02	. 574053	3.97	. 701075	7.23	. 426381	14.70	.818818	2.78	58
03	.574291	3.97	. 701509	7.23	.425499	14.70	.818651	2.78	57
04	.574529	3.97	. 701943	7.23	.424617	14.68	.818484	2.78	56
05	.574767	3.97	. 702377	7.25	.423736	14.67	.818317	2.78	55
06	575005	3.97	.702812	7.23	.422856	14.65	.818150	2.80	54
07	. 575243	3.97	703246	7.25	.421977	14.65	.817982	2.78	53
08	.575481	3.97	.703681	7.25	.421098	14.63	.817815	2.78	52
09	.575719	3.97	.704116	7.25	.420220	14.62	.817648	2.80	51
10	0.575957	3.97	0.704551	7.27	1.419343	14.62	0.817480	2.78	50
11	. 576195	3.95	. 704987	7.25	.418466	14.60	.817313	2.80	49
12	.576432	3.97	.705422	7.27	.417590	14.58	.817145	2.80	48
13	.576670	3.97	.705858	7.27	.416715	14.57	.816977	2.80	47
14	.576908	3.95	. 706294	7.27	.415841	14.57	.816809	2.78	46
15	. 577145	3.97	.706730	7.27	.414967	14.55	. 816642	2.80	45
16	. 577383	3.95	.707166	7.28	.414094	14.53	. 816474	2.80	44
17	.577620	3.97	.707603	7.27	.413222	14.52	.816306	2.80	43
18	.577858	3.95	.708039	7.28	.412351	14.52	.816138	2.82	42
19	.578095	3.95	. 708476	7.28	.411480	14.50	815969	2.80	41
20	0.578332	3.97	0.708913	7.28	1.410610	14.50	0.815801	2.80	40
21	.578570	3.95	. 709350	7.30	.409740	14.47	.815633	2.80	39
22	.578807	3.95	. 709788	7.28	.408872	14.47	. 815465	2.82	38
23	. 579044	3.95	. 710225	7.30	.408004	14.45	. 815296	2.80	37
24	. 579281	3.95	. 710663	7.30	407137	14.45	. 815128	2.82	36
25	. 579518	3.95	711101	7.30	.406270	14.43	.814959	2.80	35
26	579755	3.95	711539	7.30	. 405404	14.42	.814791	2.82	34
27	. 579992	3.95	711977	7.32	.404539	14.40	. 814622	2.82	33
28	. 580229	3.95	. 712416	7.30	403675	14.40	. 814453	2.82	32
29	.580466	3.95	712854	7.32	402811	14.38	. 814284	2.80	31
30	0.580703	3.95	0.713293	7.32	1.401948	14.37	0.814116	2.82	30
31.	. 580940	3.93	. 713732	7.32	401086	14.37	.813947	2.82	29
32	.581176	3.95	. 714171	7.33	. 400224	14.35	.813778	2.83	28
33	.581413	3.95	.714611	7.32	.399364	14.35	.813608	2.82	27
34	.581650	3.93	. 715050	7.33	. 398503	14.32	.813439	2.82	26
35	.581886	3.95	.715490	7.33	. 397644	14.32	.813270	2.82	25
36	. 582123	3.93	. 715930	7.33	. 396785	14.30	.813101	2.83	24
37	.582359	3.95	. 716370	7.33	.395927	14.28	.812931	2.82	23
38	582596	3.93	. 716810	7.33	.395070	14.28	812762	2.83	22
39	. 582832	3.95	. 717250	7.35	. 394213	14.27	.812592	2.82	21
40	0.583069	3.93	0.717691	7.35	1.393357	14.25	0.812423	2.83	20
41	.583305	3.93	. 718132	7.35	. 392502	14.25	. 812253	2.82	19
42	.583541	3.93	. 718573	7.35	.391647	14.23	. 812084	2.83	18
43	.583777	3.95	. 719014	7.35	.390793	14.22	. 811914	2.83	17
44	.584014	3.93	.719455	7.37	.389940	14.20	. 811744	2.83	16
45	. 584250	3.93	. 719897	7.37	.389088	14.20	. 811574	2.83	15
46	.584486	3.93	. 720339	7.37	.388236	14.18	.811404	2.83	14
47	.584722	3.93	. 720781	7.37	.387385	14.18	.811234	2.83	13
48	. 584958	3.93	. 721223	7.37	. 386534	14.17	.811064	2.83	12
49	.585194	3.92	.721665	7.38	. 385684	14.15	. 810894	2.85	11
50	0.585429	3.93	0.722108	7.37	1.384835	14.13	0.810723	2.83	10
51	.585665	3.93	. 722550	7.38	. 383987	14.13	. 810553	2.83	09
52	.585901	3.93	. 722993	7.38	.383139	14.12	. 810383	2.85	08
53	.586137	3.92	. 723436	7.38	.382292	14.10	. 810212	2.83	07
54	.586372	3.93	. 723879	7.40	.381446	14.10	. 810042	2.85	06
55	.586608	3.93	. 724323	7.38	.380600	14.08	.809871	2.85	05
56	. 586844	3.92	. 724766	7.40	. 379755	14.07	. 809700	2.83	04
57	.587079	3.92	. 725210	7.40	. 378911	14.07	. 809530	2.85	03
58	. 587314	3.93	. 725654	7.40	. 378067	14.05	. 809359	2.85	02
59	.587550	3.92	.726098	7.42	. 377224	14.03	. 809188	2.85	01
60	0.587785		0.726543		1.376382		0.809017		00
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	

Table A-1. Natural trigonometric functions (continued)

Table A-1. Natural trigonometric functions (continued)

Table A-1. Natural trigonometric functions (continued)

	38°								
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	
00'	0.615661	3.83	0.781286	7.80	1.279942	12.78	0.788011	2.98	60^{\prime}
01	.615891	3.82	. 781754	7.82	. 279174	12.77	. 787832	3.00	59
02	. 616120	3.82	. 782223	7.82	. 278408	12.77	. 787652	2.98	58
03	. 616349	3.82	. 782692	7.82	. 277642	12.77	. 787473	2.98	57
04	. 616578	3.82	. 783161	7.83	276876	12.73	. 787294	3.00	56
05	. 616807	3.82	. 783631	7.82	. 276112	12.75	. 787114	2.98	55
06	. 617036	3.82	. 784100	7.83	. 275347	12.72	. 786935	2.98	54
07	. 617265	3.82	784570	7.83	. 274584	12.73	. 785756	3.00	53
08	. 617494	3.80	. 785040	7.83	273820	12.70	. 786576	3.00	52
09	.617722	3.82	. 785510	7.85	. 273058	12.70	. 786296	2.98	51
10	0.617951	3.82	0.785981	7.83	1.272296	12.70	0.786217	3.00	50
11	.618180	3.80	. 786451	7.85	. 271534	12.68	. 786037	3.00	49
12	. 618408	3.82	. 786922	7.87	. 270773	12.67	.785857	3.00	48
13	. 618637	3.80	. 787394	7.85	. 270013	12.67	. 785677	3.00	47
14	. 618865	3.82	. 787865	7.85	. 269253	12.65	. 785497	3.00	46
15	. 619094	3.80	. 788336	7.87	. 268494	12.65	. 785317	3.00	45
16	. 619322	3.82	788808	7.87	267735	12.63	785137	3.00	44
17	. 619551	3.80	789280	7.87	. 266977	12.62	. 784957	3.02	43
18	. 619779	3.80	789752	7.88	. 266220	12.62	. 784776	3.00	42
19	.620007	3.80	. 790225	7.87	. 265463	12.62	. 784596	3.00	41
20	0.620235	3.82	0.790697	7.88	1.264706	12.60	0.784416	3.02	40
21	. 620464	3.80	. 791170	7.88	. 263950	12.58	. 784235	3.00	39
22	. 620692	3.80	. 791643	7.90	263195	12.58	. 784055	3.02	38
23	. 620920	3.80	. 792117	7.88	262440	12.57	. 783874	3.02	37
24	.621148	3.80	792590	7.90	261686	12.57	. 783693	3.00	36
25	. 621376	3.80	793064	7.90	. 260932	12.55	783513	3.02	35
26	. 621604	3.78	. 793538	7.90	260179	12.53	. 783332	3.02	34
27	. 621831	3.80	. 794012	7.90	259427	12.53	. 783151	3.02	33
28	. 622059	3.80	794486	7.92	258675	12.53	. 782970	3.02	32
29	.622287	3.80	794961	7.92	. 257923	12.52	. 782789	3.02	31
30	0.622515	3.78	0.795436	7.92	1.257172	12.50	0.782608	3.02	30
31	. 622742	3.80	. 795911	7.92	. 256422	12.50	782427	3.02	29
32	. 622970	3.78	. 796386	7.93	. 255672	12.48	. 782246	3.02	28
33	. 623197	3.80	. 796862	7.92	. 254923	12.48	. 782065	3.03	27
34	623425	3.78	. 797337	7.93	254174	12.47	. 781883	3.02	26
35	. 623652	3.80	. 797813	7.95	. 253426	12.47	. 781702	3.03	25
36	. 623880	3.78	. 798290	7.93	. 252678	12.45	. 781520	3.02	24
37	. 624107	3.78	. 798766	7.93	251931	12.43	. 781339	3.03	23
38	. 624334	3.78	. 799242	7.95	. 251185	12.43	. 781157	3.02	22
39	. 624561	3.80	. 799719	7.95	250439	12.43	. 780976	3.03	21
40	0.624789	3.78	0.800196	7.97	1.249693	12.42	0.780794	3.03	20
41	. 625016	3.78	. 800674	7.95	248948	12.40	. 780612	3.03	19
42	. 625243	3.78	.801151	7.97	248204	12.40	. 780430	3.03	18
43	.625470	3.78	. 801629	7.97	247460	12.38	. 780248	3.02	17
44	. 625697	3.77	. 802107	7.97	246717	12.38	. 780067	3.05	16
45	. 625923	3.78	. 802585	7.97	245974	12.37	. 779884	3.03	15
46	. 626150	3.78	. 803063	7.98	245232	12.37	. 779702	3.03	14
47	. 626377	3.78	. 803542	7.98	244490	12.35	. 779520	3.03	13
48	. 626604	3.77	. 804021	7.98	243749	12.33	. 779338	3.03	12
49	.626830	3.78	. 804500	7.98	. 243009	12.35	.779156	3.05	11
50	0.627057	3.78	0.804979	7.98	1.242268	12.32	0.778973	3.03	10
51	. 627284	3.77	. 805458	8.00	. 241529	12.32	. 778791	3.05	09
52	. 627510	3.78	. 805938	8.00	. 240790	12.30	. 778608	3.03	08
53	. 627737	3.77	. 806418	8.00	. 240052	12.30	. 778426	3.05	07
54	. 627963	3.77	. 806898	8.02	. 239314	12.30	. 778243	3.05	06
55	. 628189	3.78	. 807379	8.00	. 238576	12.28	. 778060	3.03	05
56	. 628416	3.77	. 807859	8.02	. 237839	12.27	. 777878	3.05	04
57	. 628642	3.77	. 808340	8.02	. 237103	12.27	. 777695	3.05	03
58	. 628868	3.77	. 808821	8.03	. 236367	12.25	. 777512	3.05	02
59	629094	3.77	. 809303	8.02	. 235632	12.25	. 777329	3.05	01
60	0.629320		0.809784		1.234897		0.777146		00
	Cos	d."	Cot		d."	Tan	d."	Sin	d. ${ }^{\prime}$

Table A-1. Natural trigonometric functions (continued)

	39°								
	Sin	d."	Tan	d. "	Cot	d."	Cos	d."	
00'	0.629320	3.77	0.809784	8.03	1.234897	12.23	0.777146	3.05	60'
01	. 629546	3.77	810266	8.03	. 234163	12.23	. 776963	3.05	59
02	629772	3.77	. 810748	8.03	. 233429	12.22	. 776780	3.07	58
03	. 629998	3.77	. 811230	8.03	. 232696	12.22	. 776596	3.05	57
04	. 630224	3.77	811712	8.05	231963	12.20	. 776413	3.95	56
05	. 630450	3.77	. 812195	8.05	. 231231	12.18	. 776230	3.07	55
06	. 630676	3.77	. 812678	8.05	. 230500	12.18	. 776046	3.05	54
07	. 630902	3.75	813161	8.05	. 229769	12.18	. 775863	3.07	53
08	. 631127	3.77	. 813644	8.07	229038	12.17	775679	3.05	52
09	. 631353	3.75	. 814128	8.07	. 228308	12.15	775496	3.07	51
10	0.631578	3.77	0.814612	8.07	1.227579	12.15	0.775312	3.07	50
11	. 631804	3.75	. 815096	8.07	. 226850	12.15	. 775128	3.07	49
12	. 632029	3.77	. 815580	8.08	. 226121	12.13	. 774944	3.05	48
13	. 632255	3.75	. 816065	8.07	. 225393	12.12	. 774761	3.07	47
14	. 632480	3.75	. 816549	8.08	. 224666	12.12	. 774577	3.07	46
15	. 632705	3.77	. 817034	8.08	. 223939	12.12	. 774393	3.07	45
16	. 632931	3.75	. 817519	8.10	. 223212	12.08	. 774209	3.08	44
17	. 633156	3.75	. 818005	8.10	. 222487	12.10	774024	3.07	43
18	. 633381	3.75	. 818491	8.08	. 221761	12.08	773840	3.07	42
19	.633606	3.75	. 818976	8.12	. 221036	12.07	. 773656	3.07	41
20	0.633831	3.75	0.819463	8.10	1.220312	12.07	0.773472	3.08	40
21	. 634056	3.75	. 819949	8.10	. 219588	12.05	. 773287	3.07	39
22	.634281	3.75	. 820435	8.12	218865	12.05	. 773103	3.08	38
23	. 634506	3.75	. 820922	8.12	. 218142	12.03	. 772918	3.07	37
24	. 634731	3.73	821409	8.13	. 217420	12.03	. 772734	3.08	36
25	. 634955	3.75	. 821897	8.12	216698	12.02	. 772549	3.08	35
26	. 635180	3.75	. 822384	8.13	. 215977	12.02	. 772364	3.08	34
27	.635405	3.73	. 822872	8.13	215256	12.00	. 772179	3.07	33
28	. 635629	3.75	. 823360	8.13	. 214536	12.00	. 771995	3.08	32
29	. 635854	3.73	. 823848	8.13	213816	11.98	. 771810	3.08	31
30	0.636078	3.75	0.824336	8.15	1.213097	11.98	0.771625	3.08	30
31	. 636303	3.73	824825	8.15	212378	11.97	. 771440	3.10	29
32	636527	3.73	825314	8.15	211660	11.97	. 771254	3.08	28
33	. 636751	3.75	. 825803	8.15	210942	11.95	. 771069	3.08	27
34	. 636976	3.73	. 826292	8.17	210225	11.93	770884	3.08	26
35	. 637200	3.73	. 826782	8.17	209509	11.95	. 770699	3.10	25
36	. 637424	3.73	. 827272	8.17	208792	11.92	. 770513	3.08	24
37	. 637648	3.73	. 827762	8.17	. 208077	11.92	. 770328	3.10	23
38	. 637872	3.73	. 828252	8.18	207362	11.92	. 770142	3.08	22
39	. 638096	3.73	. 828743	8.18	206647	11.90	. 769957	3.10	21
40	0.638320	3.73	0.829234	8.18	1.205933	11.90	0.769771	3.10	20
41	. 638544	3.73	. 829725	8.18	. 205219	11.88	. 769585	3.08	19
42	638768	3.73	. 830216	8.18	. 204506	11.88	. 769400	3.10	18
43	. 638992	3.72	. 830707	8.20	. 203793	11.87	. 769214	3.10	17
44	639215	3.73	. 831199	8.20	. 203081	11.87	. 769028	3.10	16
45	. 639439	3.73	. 831691	8.20	. 202369	11.85	. 768842	3.10	15
46	. 639663	3.72	. 832183	8.22	201658	11.85	. 768656	3.10	14
47	. 639886	3.73	832676	8.22	. 200947	11.83	. 768470	3.10	13
48	. 640110	3.72	. 833169	8.22	. 200237	11.82	. 768284	3.12	12
49	. 640333	3.73	. 833662	8.22	199528	11.83	768097	3.10	11
50	0.640557	3.72	0.834155	8.22	1.198818	11.80	0.767911	3.10	10
51	. 640780	3.72	. 834648	8.23	. 198110	11.80	. 767725	3.12	09
52	. 641003	3.72	835142	8.23	. 197402	11.80	. 767538	3.10	08
53	. 641226	3.73	835636	8.23	. 196694	11.78	. 767352	3.12	07
54	. 641450	3.72	. 836130	8.23	195987	11.78	. 767165	3.10	06
55	. 641673	3.72	836624	8.25	195280	11.77	. 766979	3.12	05
56	. 641896	3.72	. 837119	8.25	. 194574	11.77	. 766792	3.12	04
57	. 642119	3.72	. 837614	8.25	193868	11.75	. 766605	3.12	03
58	.642342	3.72	. 838109	8.25	. 193163	11.75	. 766418	3.12	02
59	642565	3.72	838604	8.27	192458	11.73	. 766231	3.12	01
60	0.642788		0.839100		1.191754		0.766044		00
	Sin	d."	Tan	d."	Cot	d."	Cos	d. "	

Table A-1. Natural trigonometric functions (continued)

	40°								
	Sin	d. "	Tan	d. "	Cot	d."	Cos	d."	
00'	0.642788	3.70	0.839100	8.25	1.191754	11.73	0.766044	3.12	60^{\prime}
01	.643010	3.72	.839595	8.28	191050	11.72	. 765857	3.12	59
02	.643233	3.72	. 840092	8.27	. 190347	11.72	. 765670	3.12	58
03	643456	3.72	. 840588	8.27	. 189644	11.72	765483	3.12	57
04	.643679	3.70	. 841084	8.28	. 188941	11.68	765296	3.12	56
05	. 643901	3.72	841581	8.28	. 188240	11.70	765109	3.13	55
06	. 644124	3.70	. 842078	8.28	. 187538	11.68	764921	3.12	54
07	. 644346	3.72	842575	8.30	.186837	11.67	764734	3.12	53
08	644569	3.70	843073	8.30	.186137	11.67	. 764547	3.13	52
09	644791	3.70	843571	8.30	.185437	11.65	764359	3.13	51
10	0.645013	3.70	0.844069	8.30	.184738	11.65	0.764171	3.12	50
11	. 645235	3.72	. 844567	8.32	.184039	11.65	. 763984	3.13	49
12	. 645458	3.70	845066	8.30	.183340	11.63	. 763796	3.13	48
13	.645680	3.70	845680	8.32	.182642	11.62	. 763608	3.13	47
14	.645902	3.70	846063	8.32	.181945	11.62	. 763420	3.13	46
15	. 646124	3.70	. 846562	8.33	. 181248	11.62	. 763232	3.13	45
16	. 646346	3.70	. 847062	8.33	.180551	11.60	. 763044	3.13	44
17	. 646568	3.70	847562	8.33	.179855	11.58	. 762856	3.13	43
18	.646790	3.70	. 848062	8.33	. 179160	11.60	. 762668	3.13	42
19	. 647012	3.68	. 848562	8.33	.178464	11.57	762480	3.13	41
20	0.647233	3.70	0.849062	8.35	1.177770	11.57	0.762292	3.13	40
21	.647455	3.70	. 849563	8.35	. 177076	11.57	. 762104	3.15	39
22	.647677	3.68	. 850064	8.35	.176382	11.55	. 761915	3.13	38
23	.647898	3.70	850565	8.37	. 175689	11.55	. 761727	3.15	37
24	.648120	3.68	851067	8.35	. 174996	11.53	. 761538	3.13	36
25	.648341	3.70	851568	8.37	. 174304	11.53	.761350	3.15	35
26	. 648563	3.68	852070	8.38	.173612	11.52	.761161	3.15	34
27	. 648784	3.70	. 852573	8.37	.172921	11.52	. 760972	3.13	33
28	. 649006	3.68	. 853075	8.38	. 172230	11.52	. 760784	3.15	32
29	. 649227	3.68	. 853578	8.38	.171539	11.48	. 760595	3.15	31
30	0.649448	3.68	0.854081	8.38	1.170850	11.50	0.760406	3.15	30
31	.649669	3.68	. 854584	8.38	.170160	11.48	. 760217	3.15	29
32	. 649890	3.68	.855087	8.40	.169471	11.47	. 760028	3.15	28
33	. 650111	3.68	.855591	8.40	.168783	11.47	. 759839	3.15	27
34	. 650332	3.68	. 856095	8.40	.168095	11.47	. 759650	3.15	26
35	. 650553	3.68	. 856599	8.42	. 167407	11.45	. 759461	3.17	25
36	. 650774	3.68	.857104	8.40	.166720	11.45	. 759271	3.15	24
37	. 650995	3.68	.857608	8.42	.166033	11.43	. 759082	3.15	23
38	. 651216	3.68	.858113	8.43	. 165347	11.42	. 758893	3.17	22
39	.651437	3.67	.858619	8.42	. 164662	11.43	.758703	3.15	21
40	0.651657	3.68	0.859124	8.43	1.163976	11.40	0.758514	3.17	20
41	. 651878	3.67	. 859630	8.43	. 163292	11.42	. 758324	3.17	19
42	652098	3.68	. 860136	8.43	.162607	11.40	. 758134	3.15	18
43	. 652319	3.67	. 860642	8.43	.161923	11.38	.757945	3.17	17
44	.652539	3.68	.861148	8.45	. 161240	11.38	. 757755	3.17	16
45	. 652760	3.67	.861655	8.45	. 160557	11.37	. 757565	3.17	15
46	. 652980	3.67	. 862162	8.45	. 159875	11.37	. 757375	3.17	14
47	.653200	3.68	. 862669	8.47	.159193	11.37	. 757185	3.17	13
48	. 653421	3.67	.863177	8.47	.158511	11.35	. 756995	3.17	12
49	. 653641	3.67	.863685	8.47	.157830	11.35	.756805	3.17	11
50	0.653861	3.67	0.864193	8.47	1.157149	11.33	0.756615	3.17	10
51	. 654081	3.67	. 864701	8.47	. 156469	11.32	. 756425	3.18	09
52	.654301	3.67	.865209	8.48	.155790	11.33	. 756234	3.17	08
53	. 654521	3.67	.865718	8.48	.155110	11.28	. 756044	3.18	07
54	.654741	3.67	. 866227	8.48	.154432	11.32	. 755853	3.17	06
55	.654961	3.65	.866736	8.50	. 153753	11.30	.755663	3.18	05
56	.655180	3.67	. 867246	8.50	.153075	11.28	.755472	3.17	04
57	.655400	3.67	.867756	8.50	.152398	11.28	. 755282	3.18	03
58	. 655620	3.65	. 868266	8.50	.151721	11.28	.755091	3.18	02
59	.655839	3.67	. 868776	8.52	.151044	11.27	754900	3.17	01
60	0.656059		0.869287		1.150368		0.754710		00
	Sin	d."	Tan	d."	Cot	d. ${ }^{\text {a }}$	Cos	d."	

Table A-1. Natural trigonometric functions (continued)

	41°								
	Sin	d. "	Tan	d."	Cot	d. "	Cos	d."	
00'	0.656059	3.67	0.869287	8.52	1.150368	11.25	0.754710	3.18	60^{\prime}
01	.656279	3.65	.869798	8.52	.149693	11.25	. 754519	3.18	59
02	.656498	3.65	. 870309	8.52	. 149018	11.25	. 754328	3.18	58
03	. 656717	3.67	. 870820	8.53	. 148343	11.23	. 754137	3.18	57
04	.656 93?	3.65	871332	8.52	. 147669	11.23	.753946	3.18	56
05	657156	3.65	. 871843	8.55	.146995	11.22	.753755	3.20	55
06	. 657375	3.65	.872356	8.53	.146322	11.22	. 753563	3.18	54
07	. 657594	3.67	. 872868	8.55	.145649	11.22	. 753372	3.18	53
08	657814	3.65	. 873381	8.55	.144976	11.20	.753181	3.20	52
09	658033	3.65	.873894	8.55	.144304	11.18	. 752989	3.18	51
10	0.658252	3.65	0.874407	8.55	1.143633	11.20	0.752798	3.20	50
11	. 658471	3.63	.874920	8.57	.142961	11.17	. 752606	3.18	49
12	658689	3.65	.875434	8.57	.142291	11.17	.752415	3.20	48
13	658908	3.65	.875948	8.57	.141621	11.17	. 752223	3.18	47
14	659127	3.65	.876462	8.57	.140951	11.17	. 752032	3.20	46
15	659346	3.63	.876976	8.58	. 140281	11.13	.751840	3.20	45
16	659564	3.65	.877491	8.58	.139613	11.15	.751648	3.20	44
17	. 659783	3.65	. 878006	8.58	.138944	11.13	.751456	3.20	43
18	. 660002	3.63	. 878521	8.60	. 138276	11.12	. 751264	3.20	42
19	. 660220	3.65	.879037	8.60	.137609	11.13	. 751072	3.20	41
20	0.660439	3.63	0.879553	8.60	1.136941	11.10	0.750880	3.20	40
21	. 660657	3.63	. 880069	8.60	.136275	11.10	.750688	3.20	39
22	.660875	3.65	. 880585	8.62	.135609	11.10	. 750496	3.22	38
23	.661094	3.63	.881102	8.62	. 134943	11.10	.750303	3.20	37
24	.661312	3.63	.881619	8.62	.134277	11.08	. 750111	3.20	36
25	.661530	3.63	.882136	8.62	. 133612	11.07	. 749919	3.22	35
26	.661748	3.63	.882653	8.63	. 132948	11.07	. 749726	3.20	34
27	.661966	3.63	. 883171	8.63	. 132284	11.07	. 749534	3.22	33
28	.662184	3.63	.883689	8.63	.131620	11.05	.749341	3.22	32
29	.662402	3.63	.884207	8.63	.130957	11.05	.749148	3.20	31
30	0.662620	3.63	0.884725	8.65	1.130294	11.03	0.748956	3.22	30
31	. 662838	3.63	. 885244	8.65	. 129632	11.03	. 748763	3.22	29
32	.663056	3.62	. 885763	8.65	.128970	11.02	. 748570	3.22	28
33	.663273	3.63	. 886282	8.67	.128309	11.02	.748377	3.2 .2	27
34	.663491	3.63	. 886802	8.65	.127648	11.02	. 748184	3.22	26
35	.663709	3.62	. 887321	8.68	.126987	11.00	.747991	3.22	25
36	.663926	3.63	. 887842	8.67	.126327	11.00	. 747798	3.22	24
37	.664144	3.62	. 888362	8.67	.125667	10.98	.747605	3.22	23
38	.664361	3.63	. 888882	8.68	.125008	10.98	.747412	3.23	22
39	.664579	3.62	. 889403	8.68	.124349	10.97	.747218	3.22	21
40	0.664796	3.62	0.889924	8.70	1.123691	10.97	0.747025	3.22	20
41	. 665013	3.62	. 890446	8.68	. 123033	10.97	. 746832	3.23	19
42	. 665230	3.63	890967	8.70	. 122375	10.95	.746638	3.22	18
43	. 665448	3.62	891489	8.72	.121718	10.93	. 746445	3.23	17
44	.665665	3.62	892012	8.70	. 121062	10.95	. 746251	3.23	16
45	. 665882	3.62	892534	8.72	. 120405	10.92	. 746057	3.22	15
46	. 666099	3.62	. 893057	8.72	. 119750	10.93	.745864	3.23	14
47	.666316	3.60	. 893580	8.72	.119094	10.92	.745670	3.23	13
48	. 666532	3.62	.894103	8.73	.118439	10.90	745476	3.23	12
49	.666749	3.62	894627	8.73	.117785	10.92	745282	3.23	11
50	0.666966	3.62	0.895151	8.73	1.117130	10.88	0.745088	3.23	10
51	.667183	3.60	.895675	8.73	.116477	10.90	. 744894	3.23	09
52	.667399	3.62	.896199	8.75	.115823	10.87	.744700	3.23	08
53	. 667616	3.62	. 896724	8.75	.115171	10.88	.744506	3.23	07
54	.667833	3.60	. 897249	8.75	.174518	10.87	.744312	3.25	06
55	. 668049	3.60	. 897774	8.75	. 113866	10.85	. 744117	3.23	05
56	668265	3.62	. 898299	8.77	. 113215	10.87	.743923	3.25	04
57	. 668482	3.60	. 898825	8.77	.112563	10.83	.743728	3.23	03
58	668698	3.60	.899351	8.77	.111913	10.85	. 743534	3.25	02
59	668914	3.62	899877	8.78	.111262	10.82	.743339	3.23	01
60	0.669131		0.900404		1.110613		0.743145		00
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	

Table A-1. Natural trigonometric functions (continued)

	42°								
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	
00'	0.669131	3.60	0.900404	8.78	1.110613	10.83	0.743145	3.25	60
01	. 669347	3.60	. 900931	8.78	. 109963	10.82	. 742950	3.25	59
02	. 669563	3.60	. 901458	8.78	. 109314	10.82	. 742755	3.23	58
03	. 669779	3.60	. 901985	8.80	. 108665	10.80	742561	3.25	57
04	. 669995	3.60	. 902513	8.80	. 108017	10.80	742366	3.25	56
05	670211	3.60	. 903041	8.80	. 107369	10.78	. 742171	3.25	55
06	. 670427	3.58	. 903569	8.82	. 106722	10.78	. 741976	3.25	54
07	. 670642	3.60	. 904098	8.82	.106075	10.78	. 741781	3.25	53
08	. 670858	3.60	. 904627	8.82	. 105428	10.77	. 741586	3.25	52
09	. 671074	3.58	. 905156	8.82	. 104782	10.75	.741391	3.27	51
10	. 671289	3.60	0.905685	8.83	1.104137	10.77	0.741195	3.25	50
11	. 671505	3.60	. 906215	8.83	. 103491	10.75	.741000	3.25	49
12	. 671721	3.58	. 906745	8.83	. 102846	10.73	. 740805	3.27	48
13	. 671936	3.58	. 907275	8.83	. 102202	10.73	. 740609	3.25	47
14	672151	3.60	. 907805	8.85	.101558	10.73	. 740414	3.27	46
15	672367	3.58	. 908336	8.85	. 100914	10.72	. 740218	3.25	45
16	672582	3.58	. 908867	8.85	. 100271	10.72	. 740023	3.27	44
17	. 672797	3.60	. 909398	8.87	. 099628	10.70	. 739827	3.27	43
18	. 673013	3.58	. 909930	8.87	. 098986	10.70	739631	3.27	42
19	.673228	3.58	. 910462	8.87	. 098344	10.70	. 739435	3.27	41
20	0.673443	3.58	0.910994	8.87	1.097702	10.68	0.739239	3.27	40
21	. 673658	3.58	.911526	8.88	. 097061	10.68	. 739043	3.25	39
22	. 673873	3.58	. 912059	8.88	. 096420	10.67	. 738848	3.28	38
23	. 674088	3.57	. 912592	8.88	. 095780	10.67	738651	3.27	37
24	.674302	3.58	. 913125	8.90	. 095140	10.67	. 738455	3.27	36
25	. 674517	3.58	. 913659	8.90	. 094500	10.65	. 738259	3.27	35
26	. 674732	3.58	. 914193	8.90	. 093861	10.65	. 738063	3.27	34
27	. 674947	3.57	. 914727	8.90	. 093222	10.63	. 737867	3.28	33
28	. 675161	3.58	.915261	8.92	. 092584	10.63	. 737670	3.27	32
29	.675376	3.57	. 915796	8.92	. 091946	10.62	. 737474	3.28	31
30	0.675590	3.58	0.916331	8.92	1.091309	10.63	0.737277	3.27	30
31	. 675805	3.57	. 916866	8.93	. 090671	10.60	. 737081	3.28	29
32	676019	3.57	. 917402	8.93	. 090035	10.62	. 736884	3.28	28
33	676233	3.58	. 917938	8.93	. 089398	10.60	. 736687	3.27	27
34	676448	3.57	. 918474	8.93	. 088762	10.58	. 736491	3.28	26
35	676662	3.57	. 919010	8.95	. 088127	10.58	. 736294	3.28	25
36	. 676876	3.57	. 919547	8.95	. 087492	10.58	. 736097	3.28	24
37	. 677090	3.57	. 920084	8.95	. 086857	10.57	. 735900	3.28	23
38	677304	3.57	.920621	8.97	. 086223	10.57	. 735703	3.28	22
39	.677518	3.57	.921159	8.97	. 085589	10.57	. 735506	3.28	21
40	0.677732	3.57	0.921697	8.97	1.084955	10.55	0.735309	3.28	20
41	. 677946	3.57	. 922235	8.97	. 084322	10.53	. 735112	3.28	19
42	. 678160	3.55	. 922773	8.98	. 083690	10.55	. 734915	3.30	18
43	. 678373	3.57	923312	8.98	. 083057	10.53	. 734717	3.28	17
44	. 678587	3.57	923851	8.98	. 082425	10.52	. 734520	3.28	16
45	. 678801	3.55	.924390	9.00	. 081794	10.52	. 734323	3.30	15
46	679014	3.57	. 924930	9.00	. 081163	10.52	. 734125	3.30	14
47	679228	3.55	. 925470	9.00	. 080532	10.50	. 733927	3.28	13
48	679441	3.57	. 926010	9.02	. 079902	10.50	. 733720	3.30	12
49	679655	3.55	.926551	9.00	. 079272	10.50	. 733530	3.30	11
50	0.679868	3.55	0.927091	9.02	1.078642	10.48	0.733334	3.28	10
51	. 680081	3.57	. 927632	9.03	. 078013	10.48	. 733137	3.30	09
52	680295	3.55	. 928174	9.02	. 077384	10.47	. 732939	3.30	08
53	680508	3.55	. 928715	9.03	. 076756	10.47	. 732741	3.30	07
54	. 680721	3.55	. 929257	9.05	. 076128	10.45	. 732543	3.30	06
55	. 680934	3.55	. 929800	9.03	. 075501	10.47	. 732345	3.30	05
56	. 681147	3.55	. 930342	9.05	. 074873	10.43	. 732147	3.30	04
57	. 681360	3.55	. 930885	9.05	. 074247	10.45	. 731949	3.32	03
58	. 681573	3.55	. 931428	9.05	. 073620	10.43	. 731750	3.30	02
59	681786	3.53	. 931971	9.07	. 072994	10.42	. 731552	3.30	01
60	0.681998		0.932515		1.072369		0.731354		00
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	

Table A-1. Natural trigonometric functions (continued)

Table A-1. Natural trigonometric functions (continued)

	44°								
	Sin	d."	Tan	d."	Cot	d."	Cos	d."	
00^{\prime}	0.694658	3.50	0.965689	9.37	1.035530	10.03	0.719340	3.37	60^{\prime}
01	.694868	3.48	.966251	9.38	. 034928	10.05	.719138	3.37	59
02	.695077	3.48	.966814	9.38	. 034325	10.02	.718936	3.38	58
03	. 695286	3.48	. 967377	9.38	. 033724	10.03	.718733	3.37	57
04	. 695495	3.48	. 967940	9.40	. 033122	10.02	.718531	3.37	56
05	. 695704	3.48	. 968504	9.38	. 032521	10.02	.718329	3.38	55
06	.695913	3.48	. 969067	9.42	. 031920	10.02	.718126	3.37	54
07	.696122	3.47	. 969632	9.40	.031319	10.00	.717924	3.38	53
08	.696330	3.48	.970196	9.42	.030719	9.98	.717721	3.37	52
09	.696539	3.48	. 970761	9.42	.030120	10.00	.717519	3.38	51
10	0.696748	3.48	0.971326	9.43	1.029520	9.98	0.717316	3.38	50
11	. 696957	3.47	. 971892	9.43	. 028921	9.97	. 717113	3.37	49
12	. 697165	3.48	. 972458	9.43	. 028323	9.98	.716911	3.38	48
13	. 697374	3.47	. 973024	9.43	. 027724	9.97	.716708	3.38	47
14	. 697582	3.47	. 973590	9.45	.027126	9.95	.716505	3.38	46
15	.697790	3.48	. 974157	9.45	. 026529	9.97	.716302	3.38	45
16	.697999	3.47	. 974724	9.45	.025931	9.93	.716099	3.38	44
17	.698207	3.47	.975291	9.47	. 025335	9.95	.715896	3.38	43
18	.698415	3.47	. 975859	9.47	.024738	9.93	.715693	3.38	42
19	. 698623	3.48	. 976427	9.48	.024142	9.93	.715490	3.40	41
20	0.698832	3.47	0.976996	9.47	1.023546	9.92	0.715286	3.38	40
21	. 699040	3.47	. 977564	9.48	.022951	9.92	.715083	3.38	39
22	. 699248	3.45	. 978133	9.50	.022356	9.92	.714880	3.40	38
23	.699455	3.47	.978703	9.48	.021761	9.92	.714676	3.38	37
24	. 699663	3.47	. 979272	9.50	.021166	9.90	.714473	3.40	36
25	.699871	3.47	. 979842	9.52	.020572	9.88	.714269	3.38	36
26	.700079	3.47	. 980413	9.50	.019979	9.90	. 714066	3.40	34
27	. 700287	3.45	. 980983	9.52	.019385	9.88	.713862	3.40	33
28	.700494	3.47	.981554	9.53	.018792	9.87	.713658	3.40	32
29	.700702	3.45	.982126	9.62	.018200	9.88	.713464	340	31
30	0.700909	3.47	0.982697	9.63	1.017607	9.87	0.713260	3.38	30
31	. 701117	3.45	. 983269	9.55	.017015	9.85	. 713047	3.40	29
32	.701324	3.45	. 983842	9.53	.016424	9.85	.712843	3.40	28
33	. 701531	3.47	.984414	9.55	.015833	9.85	. 712639	3.42	27
34	.701739	3.45	. 984987	9.65	. 015242	9.85	. 712434	3.40	26
35	.701946	3.45	. 985660	9.57	.014651	9.83	. 712230	3.40	25
36	.702163	3.45	. 986134	9.67	.014061	9.83	.712026	3.40	24
37	.702360	3.45	.986708	9.67	.013471	9.82	.711822	3.42	23
38	.702567	3.45	. 987282	9.68	. 012882	9.82	.711617	3.40	22
39	.702774	3.45	. 987857	9.58	.012293	9.82	.711413	3.40	21
40	0.702981	3.45	0.988432	9.68	1.011704	9.82	0.711209	3.42	20
41	. 703188	3.45	. 988007	9.68	.011115	9.80	.711004	3.42	19
42	.703395	3.43	. 989582	9.60	.010527	9.80	.710799	3.40	18
43	. 703601	3.45	. 990158	9.62	. 009939	9.78	.710595	3.42	17
44	.703808	3.45	. 990735	9.60	. 009352	9.78	.710390	3.42	16
45	.704015	3.43	.991311	9.62	. 008765	9.78	.710185	3.40	15
46	. 704221	3.45	.991888	9.62	.008178	9.77	.709981	3.42	14
47	. 704428	3.43	.992465	9.63	. 007592	9.77	. 709776	3.42	13
48	. 704634	3.45	.993043	9.63	. 007006	9.77	. 709571	3.42	12
49	.704841	3.43	.993621	9.63	.006420	9.75	.709366	3.42	11
50	0.705047	3.43	0.994199	9.65	1.005836	9.75	0.709161	3.42	10
51	. 705253	3.43	. 994778	9.65	. 005250	9.75	. 708956	3.43	09
52	.705459	3.43	.995357	9.65	.004665	9.73	. 708750	3.43	08
53	. 705665	3.45	. 995936	9.65	.004081	9.73	. 708545	3.42	07
54	.705872	3.43	.996515	9.67	.003497	9.73	. 708340	3.43	06
55	.706078	3.43	. 997095	9.68	. 002913	9.72	. 708134	$3.42{ }^{*}$	05
56	. 706284	3.42	.997676	9.67	.002330	9.72	. 707929	3.42	04
57	.706489	3.43	. 998256	9.68	. 001747	9.72	. 707724	3.43	03
58	.706695	3.43	.998837	9.68	.001164	9.70	. 707518	3.43	02
59	.706901	3.43	.999418	9.70	. 000582	9.70	. 707312	3.42	01
60	0.707107		1.000000		1.000000		0.707107		00
	Cos	d."	Cot	d."	Tan	d."	Sin	d."	

Table A-2. Stadia reduction

Stadia work involves observing-

- The angle by which the line of sight departs from a horizontal line. This reading is the argument for entering the table.
- The rod interval intercepted by the stadia wires, which are usually adjusted so that the distance to the rod is exactly 100 times the reading on the rod when the telescope is level.

The table gives horizontal distances and differences of elevation for unit readings on the rod and for angle of elevation from 0° to 30°.

Example. Rod reading is 3.25 feet and angle of inclination is $5^{\circ} 35^{\prime}$.
Horizontal Distance $=99.05 \times 3.25=321.91 \mathrm{ft}$
Difference of Elevation $=9.68 \times 3.25=31.46 \mathrm{ft}$
Stadia Reduction Formulas. The following formulas are used in computing stadia reductions.

Horizontal Distance $=(\operatorname{Rod}$ Interval $\mathbf{x} 100) \operatorname{Cos}^{2} \mathbf{a}$
Vertical Distance $=($ Rod Interval $\times 100){ }^{1 / 2} \operatorname{Sin}^{2} a$
a = Angle of inclination

Table A-2. Stadia reduction (continued)

	0°		1°		2°		3°	
Minutes								
	Hor. dist.	Diff. elev.						
0	100.00	0.00	99.97	1.74	99.88	3.49	99.73	5.23
2	100.00	0.06	99.97	1.80	99.87	3.55	99.72	5.28
4	100.00	0.12	99.97	1.86	99.87	3.60	99.71	5.34
6	100.00	0.17	99.96	1.92	99.87	3.66	99.71	5.40
8	100.00	0.23	99.96	1.98	99.86	3.72	99.70	5.46
10	100.00	0.29	99.96	2.04	99.86	3.78	99.69	5.52
12	100.00	0.35	99.96	2.09	99.85	3.84	99.69	5.57
14	100.00	0.41	99.95	2.15	99.85	3.90	99.68	5.63
16	100.00	0.47	99.95	2.21	99.84	3.95	99.68	5.69
18	100.00	0.52	99.95	2.27	99.84	4.01	99.67	5.75
20	100.00	0.58	99.95	2.33	99.83	4.07	99.66	5.80
22	100.00	0.64	99.94	2.38	99.83	4.13	99.66	5.86
24	100.00	0.70	99.94	2.44	99.82	4.18	99.65	5.92
26	99.99	0.76	99.94	2.50	99.82	4.24	99.64	5.98
28	99.99	0.81	99.93	2.56	99.81	4.30	99.63	6.04
30	99.99	0.87	99.93	2.62	99.81	4.36	99.63	6.09
32	99.99	0.93	99.93	2.67	99.80	4.42	99.62	6.15
34	99.99	0.99	99.93	2.73	99.80	4.48	99.62	6.21
36	99.99	1.05	99.92	2.79	99.79	4.53	99.61	6.27
38	99.99	1.11	99.92	2.85	99.79	4.59	99.60	6.33
40	99.99	1.16	99.92	2.91	99.78	4.65	99.59	6.38
42	99.99	1.22	99.91	2.97	99.78	4.71	99.59	6.44
44	99.98	1.28	99.91	3.02	99.77	4.76	99.58	6.50
46	99.98	1.34	99.90	3.08	99.77	4.82	99.57	6.56
48	99.98	1.40	99.90	3.14	99.76	4.88	99.56	6.61
50	99.98	1.45	99.90	3.20	99.76	4.94	99.56	6.67
52	99.98	1.51	99.89	3.26	99.75	4.99	99.55	6.73
54	99.98	1.57	99.89	3.31	99.74	5.05	99.54	6.78
56	99.97	1.63	99.89	3.37	99.74	5.11	99.53	6.84
58	99.97	1.69	99.88	3.43	99.73	5.17	99.52	6.90
60	99.97	1.74	99.88	3.49	99.73	5.23	99.51	6.96

*These tables are adequate for use in both feet and meters.

Table A-2. Stadia reduction (continued)

	4°		5°		6°		7°	
Minutes								
	Hor. dist.	Diff. elev.						
0	99.51	6.69	99.24	8.68	98.91	10.40	98.51	12.10
2	99.51	7.02	99.23	8.74	98.90	10.45	98.50	12.15
4	99.50	7.07	99.22	8.80	98.88	10.51	98.48	12.21
6	99.49	7.13	99.21	8.85	98.87	10.57	98.47	12.26
8	99.48	7.19	99.20	8.91	98.86	10.62	98.46	12.32
10	99.47	7.25	99.19	8.97	98.85	10.68	98.44	12.38
12	99.46	7.30	99.18	9.03	98.83	10.74	98.43	12.43
14	99.46	7.36	99.17	9.08	98.82	10.79	98.41	12.49
16	99.45	7.42	99.16	9.14	98.81	10.85	98.40	12.55
18	99.44	7.48	99.15	9.20	98.80	10.91	98.39	12.60
20	99.43	7.53	99.14	9.25	98.78	10.96	98.37	12.66
22	99.42	7.59	99.13	9.31	98.77	11.02	98.36	12.72
24	99.41	7.65	99.11	9.37	98.76	11.08	98.34	12.77
26	99.40	7.71	99.10	9.43	98.74	11.13	98.33	12.83
28	99.39	7.76	99.09	9.48	98.73	11.19	98.31	12.88
30	99.38	7.82	99.08	9.54	98.72	11.25	98.29	12.94
32	99.38	7.88	99.07	9.60	98.71	11.30	98.28	13.00
34	99.37	7.94	99.06	9.65	98.69	11.36	98.27	13.05
36	99.36	7.99	99.05	9.71	98.68	11.42	98.25	13.11
38	99.35	8.05	99.04	9.77	98.67	11.47	98.24	13.17
40	99.34	8.11	99.03	9.83	98.65	11.53	98.22	13.22
42	99.33	8.17	99.01	9.88	98.64	11.59	98.20	13.28
44	99.32	8.22	99.00	9.94	98.63	11.64	98.19	13.33
46	99.31	8.28	98.99	10.00	98.61	11.70	98.17	13.39
48	99.30	8.34	98.98	10.05	98.60	11.76	98.16	13.45
50	99.29	8.40	98.97	10.11	98.58	11.81	98.14	13.50
52	99.28	8.45	98.96	10.17	98.57	11.87	98.13	13.56
54	99.27	8.51	98.94	10.22	98.56	11.93	98.11	13.61
56	99.26	8.57	99.93	10.28	98.54	11.98	98.10	13.67
58	99.25	8.63	98.92	10.34	98.53	12.04	98.08	13.73
60	99.24	8.68	98.91	10.40	98.51	12.10	98.06	13.78

Table A-2. Stadia reduction (continued)

	8°		9°		10°		11°	
Minutes	Hor. dist.	Diff. elev.						
0	98.06	13.78	97.55	15.45	96.98	17.10	96.36	18.73
2	98.05	13.84	97.53	15.51	96.96	17.16	96.34	18.78
4	98.03	13.89	97.52	15.56	96.94	17.21	96.32	18.84
6	98.01	13.95	97.50	15.62	96.92	17.26	96.29	18.89
8	98.00	14.01	97.48	15.67	96.90	17.32	96.27	18.95
10	97.98	14.06	97.46	15.73	96.88	17.37	96.25	19.00
12	97.97	14.12	97.44	15.78	96.86	17.43	96.23	19.05
14	97.95	14.17	97.43	15.84	96.84	17.48	96.21	19.11
16	97.93	14.23	97.41	15.89	96.82	17.54	96.18	19.16
18	97.92	14.28	97.39	15.95	96.80	17.59	96.16	19.21
20	97.90	14.34	97.37	16.00	96.78	17.65	96.14	19.27
22	97.88	14.40	97.35	16.06	96.76	17.70	96.12	19.32
24	97.87	14.45	97.33	16.11	96.74	17.76	96.09	19.38
26	97.85	14.51	97.31	16.17	96.72	17.81	96.07	19.43
28	97.83	14.56	97.29	16.22	96.70	17.86	96.05	19.48
30	97.82	14.62	97.28	16.28	96.68	17.92	96.03	19.54
32	97.80	14.67	97.26	16.33	96.66	17.97	96.00	19.59
34	97.78	14.73	97.24	16.39	96.64	18.03	95.98	19.64
36	97.76	14.79	97.22	16.44	96.62	18.08	95.96	19.70
38	97.75	14.84	97.20	16.50	96.60	18.14	95.93	19.75
40	97.73	14.90	97.18	16.55	96.57	18.19	95.91	19.80
42	97.71	14.95	97.16	16.61	96.55	18.24	95.89	19.86
44	97.69	15.01	97.14	16.66	96.53	18.30	95.86	19.91
46	97.68	15.06	97.12	16.72	96.51	18.35	95.84	19.96
48	97.66	15.12	97.10	16.77	96.49	18.41	95.82	20.02
50	97.64	15.17	97.08	16.83	96.47	18.46	95.79	20.07
52	97.62	15.23	97.06	16.88	96.45	18.51	95.77	20.12
54	97.61	15.28	97.04	16.94	96.42	18.57	95.75	20.18
56	97.59	15.34	97.02	16.99	96.40	18.62	95.72	20.23
58	97.57	15.40	97.00	17.05	96.38	18.68	95.70	20.28
60	97.55	15.45	96.98	17.10	96.36	18.73	95.68	20.34

Table A-2. Stadia reduction (continued)

	12°		13°		14°		15°	
Minutes	Hor. dist.	Diff. elev.						
0	95.68	20.34	94.94	21.92	94.15	23.47	93.30	25.00
2	95.65	20.39	94.91	21.97	94.12	23.52	93.27	25.05
4	95.63	20.44	94.89	22.02	94.09	23.58	93.24	25.10
6	95.61	20.50	94.86	22.08	94.07	23.63	93.21	25.15
8	95.58	20.55	94.84	22.13	94.04	23.68	93.18	25.20
10	95.56	20.60	94.81	22.18	94.01	23.73	93.16	25.25
12	95.53	20.66	94.79	22.23	93.98	23.78	93.13	25.30
14	95.51	20.71	94.76	22.28	93.95	23.83	93.10	25.35
16	95.49	20.76	94.73	22.34	93.93	23.88	93.07	25.40
18	95.46	20.81	94.71	22.39	93.90	23.93	93.04	25.45
20	95.44	20.87	94.68	22.44	93.87	23.99	93.01	25.50
22	95.41	20.92	94.66	22.49	93.84	24.04	92.98	25.55
24	95.39	20.97	94.63	22.54	93.81	24.09	92.95	25.60
26	95.36	21.03	94.60	22.60	93.79	24.14	92.92	25.65
28	95.34	21.08	94.58	22.65	93.76	24.19	92.89	25.70
30	95.32	21.13	94.55	22.70	93.73	24.24	92.86	25.75
32	95.29	21.18	94.52	22.75	93.70	24.29	92.83	25.80
34	95.27	21.24	94.50	22.80	93.67	24.34	92.80	25.85
36	95.24	21.29	94.47	22.85	93.65	24.39	92.77	25.90
38	95.22	21.34	94.44	22.91	93.62	24.44	92.74	25.95
40	95.19	21.39	94.42	22.96	93.59	24.49	92.71	26.00
42	95.17	21.45	94.39	23.01	93.56	24.55	92.68	26.05
44	95.14	21.50	94.36	23.06	93.53	24.60	92.65	26.10
46	95.12	21.55	94.34	23.11	93.50	24.65	92.62	26.15
48	95.09	21.60	94.31	23.16	93.47	24.70	92.59	26.20
50	95.07	21.66	94.28	23.22	93.45	24.75	92.56	26.25
52	95.04	21.71	94.26	23.27	93.42	24.80	92.53	26.30
54	95.02	21.76	94.23	23.32	93.39	24.85	92.49	26.35
56	94.99	21.81	94.20	23.37	93.36	24.90	92.46	26.40
58	94.97	21.87	94.17	23.42	93.33	24.95	92.43	26.45
60	94.94	21.92	94.15	23.47	93.90	25.00	92.40	26.50

Table A-2. Stadia reduction (continued)

	16°		17°		18°		19°	
Minutes	Hor dist.	Diff. elev.	Hor. dist.	Diff. elev.	Hor. dist.	Diff. elev.	Hor. dist.	Diff. elev.
0	92.40	26.50	91.45	27.96	90.45	29.39	89.40	30.78
2	92.37	26.55	91.42	28.01	90.42	29.44	89.36	30.83
4	92.34	26.59	91.39	28.06	90.38	29.48	89.33	30.87
6	92.31	26.64	91.35	28.10	90.35	29.53	89.29	30.92
8	92.28	26.69	91.32	28.15	90.31	29.58	89.26	30.97
10	92.25	26.74	91.29	28.20	90.28	29.62	89.22	31.01
12	92.22	26.79	91.26	28.25	90.24	29.67	89.18	31.06
14	92.19	26.84	91.22	28.30	90.21	29.72	89.15	31.10
16	92.15	26.89	91.19	28.34	90.18	29.76	89.11	31.15
18	92.12	26.94	91.16	28.39	90.14	29.81	89.08	31.19
20	92.09	26.99	91.12	28.44	90.11	29.86	89.04	31.24
22	92.06	27.04	91.09	28.49	90.07	29.90	89.00	31.28
24	92.03	27.09	91.06	28.54	90.04	29.95	88.96	31.33
26	92.00	27.13	91.02	28.58	90.00	30.00	88.93	31.38
28	91.97	27.18	90.99	28.63	89.97	30.04	88.89	31.42
30	91.93	27.23	90.96	28.68	89.93	30.09	88.86	31.47
32	91.90	27.28	90.92	28.73	89.90	30.14	88.82	31.51
34	91.87	27.33	90.89	28.77	89.86	30.19	88.78	31.56
36	91.84	27.38	90.86	28.82	89.83	30.23	88.75	31.60
38	91.81	27.43	90.82	28.87	89.79	30.28	88.71	31.65
40	91.77	27.48	90.79	28.92	89.76	30.32	88.67	31.69
42	91.74	27.52	90.76	28.96	89.72	30.37	88.64	31.74
44	91.71	27.57	90.72	29.01	89.69	30.41	88.60	31.78
46	91.68	27.62	90.69	29.06	89.65	30.46	88.56	31.83
48	91.65	27.67	90.66	29.11	89.61	30.51	88.53	31.87
50	91.61	27.72	90.62	29.15	89.58	30.55	88.49	31.92
52	91.58	27.77	90.59	29.20	89.54	30.60	88.45	31.96
54	91.55	27.81	90.55	29.25	89.51	30.65	88.41	32.01
56	91.52	27.86	90.52	29.30	89.47	30.69	88.38	32.05
58	91.48	27.91	90.48	29.34	89.44	30.74	88.34	32.09
60	91.45	27.96	90.45	29.39	89.40	30.78	88.30	32.14

Table A-2. Stadia reduction (continued)

	20°		21°		22°		23°	
Minutes								
	Hor. dist.	Diff. elev.						
0	88.30	32.14	87.16	33.46	85.97	34.73	84.73	35.97
2	88.26	32.18	87.12	33.50	85.93	34.77	84.69	36.01
4	88.23	32.23	87.08	33.54	85.89	34.82	84.65	36.05
6	88.19	32.27	87.04	33.59	85.85	34.86	84.61	36.09
8	88.15	32.32	87.00	33.63	85.80	34.90	84.57	36.13
10	88.11	32.36	86.96	33.67	85.76	34.94	84.52	36.17
12	88.08	32.41	86.92	33.72	85.72	34.98	84.48	36.21
14	88.04	32.45	86.88	33.76	85.68	35.02	84.44	36.25
16	88.00	32.49	86.84	33.80	85.64	35.07	84.40	36.29
18	87.96	32.54	86.80	33.84	85.60	35.11	84.35	36.33
20	87.93	32.58	86.77	33.89	85.56	35.15	84.31	36.37
22	87.89	32.63	86.73	33.93	85.52	35.19	84.27	36.41
24	87.85	32.67	86.69	33.97	85.48	35.23	84.23	36.45
26	87.81	32.72	86.65	34.01	85.44	35.27	84.18	36.49
28	87.77	32.76	86.61	34.06	85.40	35.31	84.14	36.53
30	87.74	32.80	86.57	34.10	85.36	35.36	84.10	36.57
32	87.70	32.85	86.53	34.14	85.31	35.40	84.06	36.61
34	87.66	32.89	86.49	34.18	85.27	35.44	84.01	36.65
36	87.62	32.93	86.45	34.23	85.23	35.48	83.97	36.69
38	87.58	32.98	86.41	34.27	85.19	35.52	83.93	36.73
40	87.54	33.02	86.37	34.31	85.15	35.56	83.89	36.77
42	87.51	33.07	86.33	34.35	85.11	35.60	83.84	36.80
44	87.47	33.11	86.29	34.40	85.07	35.64	83.80	36.84
46	87.43	33.15	86.25	34.44	85.02	35.68	83.76	36.88
48	87.39	33.20	86.21	34.48	84.98	35.72	83.72	36.92
50	87.35	33.24	86.17	34.52	84.94	35.76	83.67	36.96
52	87.31	33.28	86.13	34.57	84.90	35.80	83.63	37.00
54	87.27	33.33	86.09	34.61	84.86	35.85	83.59	37.04
56	87.24	33.37	86.05	34.65	84.82	35.89	83.54	37.08
58	87.20	33.41	86.01	34.69	84.77	35.93	83.50	37.12
60	87.16	33.46	85.97	34.73	84.73	35.97	83.46	37.16

Table A-2. Stadia reduction (continued)

	24°		25°		26°		27°	
Minutes	Hor. dist.	Diff. elev.						
0	83.46	37.16	82.14	38.30	80.78	39.40	79.39	40.45
2	83.41	37.20	82.09	38.34	80.74	39.44	79.34	40.49
4	83.37	37.23	82.05	38.38	80.69	39.47	79.30	40.52
6	83.33	37.27	82.01	38.41	80.65	39.51	79.25	40.55
8	83.28	37.31	81.96	38.45	80.60	39.54	79.20	40.59
10	83.24	37.35	81.92	38.49	80.55	39.58	79.15	40.62
12	83.20	37.39	81.87	38.53	80.51	39.61	79.11	40.66
14	83.15	37.43	81.83	38.56	80.46	39.65	79.06	40.69
16	83.11	37.47	81.78	38.60	80.41	39.69	79.01	40.72
18	83.07	37.51	81.74	38.64	80.37	39.72	78.96	40.76
20	83.02	37.54	81.69	38.67	80.32	39.76	78.92	40.79
22	82.98	37.58	81.65	38.71	80.28	39.79	78.87	40.82
24	82.93	37.62	81.60	38.75	80.23	39.83	78.82	40.86
26	82.89	37.66	81.56	38.78	80.18	39.86	78.77	40.89
28	82.85	37.70	81.51	38.82	80.14	39.90	78.73	40.92
30	82.80	37.74	81.47	38.86	80.09	39.93	78.68	40.96
32	82.76	37.77	81.42	38.89	80.04	39.97	78.63	40.99
34	82.72	37.81	81.38	38.93	80.00	40.00	78.58	41.02
36	82.67	37.85	81.33	38.97	79.95	40.04	78.54	41.06
38	82.63	37.89	81.28	39.00	79.90	40.07	78.49	41.09
40	82.58	37.93	81.24	39.04	79.86	40.11	78.44	41.12
42	82.54	37.96	81.19	39.08	79.81	40.14	78.39	41.16
44	82.49	38.00	81.15	39.11	79.76	40.18	78.34	41.19
46	82.45	38.04	81.10	39.15	79.72	40.21	78.30	41.22
48	82.41	38.08	81.06	39.18	79.67	40.24	78.25	41.26
50	82.36	38.11	81.01	39.22	79.62	40.28	78.20	41.29
52	82.32	38.15	80.97	39.26	79.58		78.15	41.32
54	82.27	38.19	80.92	39.29	79.53	40.35	78.10	41.35
56	82.23	38.23	80.87	39.33	79.48	40.38	78.06	41.39
58	82.18	38.26	80.83	39.36	79.44	40.42	78.01	41.42
60	82.14	38.30	80.78	39.40	79.39	40.45	77.96	41.45

Table A-2. Stadia reduction (continued)

	28°		29°		30°	
	Hor. dist.	Diff. elev.	Hor. dist.	Diff. elev.	Hor. dist.	Diff. elev.
0	77.96	41.45	76.50	42.40	75.00	43.30
2	77.91	41.48	76.45	42.43	74.95	43.33
4	77.86	41.52	76.40	42.46	74.90	43.36
6	77.81	41.55	76.35	42.49	74.85	43.39
8	77.77	41.58	76.30	42.53	74.80	43.42
10	77.72	41.61	76.25	42.56	74.75	43.45
12	77.67	41.65	76.20	42.59	74.70	43.47
14	77.62	41.68	76.15	42.62	74.65	43.50
16	77.57	41.71	76.10	42.65	74.60	43.53
18	77.52	41.74	76.05	42.68	74.55	43.56
20	77.48	41.77	76.00	42.71	74.49	43.59
22	77.42	41.81	75.95	42.74	74.44	43.62
24	77.38	41.84	75.90	42.77	74.39	43.65
26	77.33	41.87	75.85	42.80	74.34	43.67
28	77.28	41.90	75.80	42.83	74.29	43.70
30	77.23	41.93	75.75	42.86	74.24	43.73
32	77.18	41.97	75.70	42.89	74.19	43.76
34	77.13	42.00	75.65	42.92	74.14	43.79
36	77.09	42.03	75.60	42.95	74.09	43.82
38	77.04	42.06	75.55	42.98	74.04	43.84
40	76.99	42.09	75.50	43.01	73.99	46.87
42	76.94	42.12	75.45	43.04	73.93	43.90
44	76.89	42.15	75.40	43.07	73.88	43.93
46	76.84	42.19	75.35	43.10	73.83	43.95
48	76.79	42.22	75.30	43.13	73.78	43.98
50	76.74	42.25	75.25	43.16	73.73	44.01
52	76.69	42.28	75.20	43.18	73.68	44.04
54	76.64	42.31	75.15	43.21	73.63	44.07
56	76.59	42.34	75.10	43.24	73.58	44.09
58	76.55	42.37	75.05	43.27	73.52	44.12
60	76.50	42.40	75.00	43.30	73.47	44.15

Table A-3. Conversion of minutes into decimals of a degree

	0"	10"	15"	20"	30"	40"	45"	50"	
0	. 00000	. 00278	. 00417	. 00556	. 00833	. 01111	. 01250	. 01389	0
1	. 01667	. 01944	. 02083	. 02222	. 02500	. 02778	. 02917	03056	1
2	. 03333	. 03611	. 03750	. 03889	. 04167	04444	. 04583	. 04722	2
3	. 05000	. 05278	. 05417	. 05556	. 05833	. 06111	. 06250	. 06389	3
4	. 06667	. 06944	. 07083	. 07222	. 07500	. 07778	. 07917	. 08056	4
5	. 08333	. 08611	. 08750	. 08889	. 09167	. 09444	. 09583	. 09722	5
6	. 10000	. 10278	. 10417	. 10556	. 10833	. 11111	. 11250	. 11389	6
7	. 11667	. 11944	. 12083	. 12222	. 12500	12778	. 12917	. 13056	7
8	. 13333	. 13611	. 13750	. 13889	. 14167	. 14444	. 14583	. 14722	8
9	. 15000	. 15278	. 15417	. 15556	. 15833	. 16111	. 16250	. 16389	9
10	. 16667	. 16944	. 17083	. 17222	. 17500	. 17778	. 17917	. 18056	10
11	. 18333	. 18611	. 18750	. 18889	. 19167	. 19444	. 19583	. 19722	11
12	. 20000	. 20278	. 20417	. 20556	. 20833	. 21111	. 21250	. 21389	12
13	. 21667	21944	22083	. 22222	. 22500	. 22778	. 22917	. 23056	13
14	. 23333	23611	23750	. 23889	. 24167	. 24444	. 24583	. 24722	14
15	. 25000	25278	25417	25556	. 25833	. 26111	. 26250	. 26389	15
16	. 26667	. 26944	. 27083	. 27222	. 27500	. 27778	. 27917	. 28056	16
17	. 28333	. 28611	. 28750	. 28889	. 29167	. 29444	. 29583	. 29722	17
18	. 30000	. 30278	30417	. 30556	. 30833	. 31111	. 31250	. 31389	18
19	. 31667	. 31944	32083	. 32222	. 32500	. 32778	. 32917	. 33056	19
20	. 33333	. 33611	. 33750	. 33889	. 34167	. 34444	. 34583	. 34722	20
21	. 35000	. 35278	. 35417	. 35556	. 35833	. 36111	. 36250	. 36389	21
22	. 36667	. 36944	. 37083	. 37222	. 37500	. 37778	. 37917	. 38056	22
23	. 38333	. 38611	. 38750	. 38889	. 39167	. 39444	. 39583	. 39722	23
24	. 40000	. 40278	40417	. 40556	. 40833	. 41111	. 41250	. 41389	24
25	. 41667	. 41944	. 42083	. 42222	. 42500	. 42778	. 42917	. 43056	25
26	. 43333	. 43611	. 43750	. 43889	. 44167	. 44444	. 44583	. 44722	26
27	. 45000	. 45278	. 45417	. 45556	. 45883	. 46111	. 46250	. 46389	27
28	. 46667	. 46944	. 47083	. 47222	. 47500	. 47778	. 47917	. 48056	28
29	. 48333	. 48611	. 48750	. 48889	. 49167	. 49444	. 49583	. 49722	29
30	. 50000	. 50278	. 50417	. 50556	. 50833	. 51111	. 51250	. 51389	30

Table A-3. Conversion of minutes into decimals of a degree (continued)

	O"	10"	15"	20"	30"	40"	45"	50"	
31	. 51667	. 51944	. 52083	. 52222	52500	. 52778	. 52917	. 53056	31
32	. 53333	. 53611	. 53750	. 53889	54167	. 54444	. 54583	. 54722	32
33	. 55000	. 55278	. 55417	. 55556	. 55833	. 56111	. 56250	. 56389	33
34	. 56667	. 56944	. 57083	. 57222	57500	. 57778	. 57917	. 58056	34
35	. 58333	. 58611	. 58750	. 58889	59167	. 59444	. 59583	. 59722	35
36	. 60000	. 60278	. 60417	. 60556	. 60833	. 61111	. 61250	. 61389	36
37	. 61667	. 61944	. 62083	. 62222	. 62500	. 62778	. 62917	. 63056	37
38	63333	. 63611	. 63750	. 63889	. 64167	. 64444	. 64583	. 64722	38
39	. 65000	. 65278	. 65417	. 65556	. 65833	. 66111	. 66250	. 66389	39
40	. 66667	. 66944	. 67083	. 67222	67500	. 67778	. 67917	. 68056	40
41	. 68333	. 68611	. 68750	. 68889	. 69167	. 69444	. 69583	. 69722	41
42	. 70000	. 70278	. 70417	. 70556	. 70883	. 71111	. 71250	. 71389	42
43	. 71667	. 71944	. 72083	. 72222	. 72500	. 72778	. 72917	. 73056	43
44	. 73333	. 73611	. 73750	. 73889	. 74167	. 74444	. 74583	. 74722	44
45	. 75000	. 75278	. 75417	. 75556	. 75833	. 76111	. 76250	. 76389	45
46	. 76667	. 76944	. 77083	. 77222	. 77500	. 77778	. 77917	. 78056	46
47	. 78333	. 78611	. 78750	. 78889	. 79167	. 79444	. 79583	. 79722	47
48	80000	. 80278	80417	. 80556	. 80833	. 81111	. 81250	. 81389	48
49	. 81667	. 81944	. 82083	. 82222	. 82500	. 82778	. 82917	. 83056	49
50	. 83333	83611	83750	. 83889	. 84167	. 84444	. 84583	. 84722	50
51	. 85000	. 85278	. 85417	. 85556	. 85833	. 86111	. 86250	86389	51
52	. 86667	. 86944	. 87088	. 87222	. 87500	. 87778	. 87917	88056	52
53	. 83333	. 88611	. 88750	. 88889	. 89167	. 89444	. 89583	. 89722	53
54	. 90000	. 90278	. 90417	. 90556	. 90833	. 91111	. 91250	. 91389	54
55	. 91667	. 91944	. 92083	. 92222	. 92500	. 92778	. 92917	. 93056	55
56	. 93333	. 93611	. 93750	. 93889	. 94167	. 94444	. 94583	. 94722	56
57	95000	. 95278	. 95417	. 95556	. 95833	. 96111	. 96250	96389	57
58	. 96667	. 96944	. 97083	. 97222	. 97500	. 97778	. 97917	. 98056	58
59	. 98333	. 98611	. 98750	. 98889	. 99167	. 99444	. 99583	. 99722	59

Table A-4. Useful constants and formulas

Figure A-1. Solution of triangles

SOLUTION OF RIGHT TRIANGLES

1. $\sin A=\frac{a}{c}=\cos B$
2. $\sec A=\frac{c}{b}=\operatorname{cosec} B$
3. $\cos A=\frac{b}{c}=\sin B$
4. $\operatorname{cosec} A=\frac{c}{a}=\sec B$
5. $\tan A=\frac{a}{b}=\cot B$
6. vers $A=\frac{c-b}{c}=\frac{d}{c}$
7. $\cot A=\frac{b}{a}=\tan B$
8. $\operatorname{exsec} A=\frac{e}{c}$
9. $a=c \sin A=b \tan A=c \cos B=b \cot B=\sqrt{(c+b)(c-b)}$
10. $b=c \cos A=a \cot A=c \sin B=a \tan B=\sqrt{(c+a)(c-a)}$
11. $d=c$ vers A
12. $e=c \operatorname{exsec} A$
13. $c=\frac{a}{\cos B}=\frac{b}{\sin B}=\frac{a}{\sin A}=\frac{b}{\cos A}=\frac{d}{\operatorname{vers} A}=\frac{e}{\operatorname{exsec} A}$

SOLUTION OF OBLIQUE TRIANGLES

Given	Sought	
14. A, B, a	b, c	$b=\frac{a}{\sin A} \sin B \quad c=\frac{a}{\sin A} \sin (A+B)$
15. A, a, b	B, c	$\sin B=\frac{\sin A}{a} b \quad c=\frac{a}{\sin a} \sin C$
16. C, a, b	A-B	$\tan 1 / 2(A-B)=\frac{a-b}{a+b} \tan 1 / 2(A+B)$
17. a, b, c	A	Let $s=1 / 2(a+b+c) ; \sin 1 / 2 A=\sqrt{\frac{(s-b)(s-c)}{b c}}$
18.		$\cos 1 / 2 A=\sqrt{\frac{s(s-a)}{b c}} ; \tan 1 / 2 A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$
19.		$\sin A=\frac{2 \sqrt{s(s-a)(s-b)(s-c) ;}}{b c}$
20.		$\text { vers } A=\frac{2(s-b)(s-c)}{b c}$
21.	area	area $=\sqrt{s(s-a)(s-b)(s-c)}$
22. A, B, C, a	area	$\text { area }=\frac{a^{2} \sin B \cdot \sin C}{2 \sin A}$
23., C, a, b	area	area $=1 / 2 \mathrm{ab} \sin C$.

a. Trigonometrical formulas. - The six most usual trigonometrical functions are the ratios defined for a right-angled triangle, as follows:

$$
\begin{aligned}
& \text { sine }=\frac{\text { opposite side }}{\text { hypotenuse }} \\
& \text { cosine }=\frac{\text { adjacent side }}{\text { hypotenuse }} \\
& \text { tangent }=\frac{\text { opposite side }}{\text { adjacent side }} \\
& \text { cotangent }=\frac{\text { adjacent side }}{\text { opposite side }} \\
& \text { secant }=\frac{\text { hypotenuse }}{\text { adjacent side }} \\
& \text { cosecant }=\frac{\text { hypotenuse }}{\text { opposite side }}
\end{aligned}
$$

Right-angled triangles can be solved by the above and oblique triangles may be solved by the use of the additional relationships for any triangle:

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& \frac{a-b}{a+b}=\frac{\tan 1 / 2(A-B)}{\tan 1 / 2(A+B)}
\end{aligned}
$$

and the group

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

where A, B, and C are the angles and a, b, and c are the sides opposite to these angles, respectively.

Table A-4. Useful constants and formulas (continued)

b. Fundamental relations.

$$
\begin{aligned}
& \sin A=\frac{1}{\csc A} ; \cos A=\frac{1}{\sec A} ; \tan A=\frac{1}{\cot A}=\frac{\sin A}{\cos A} \\
& \csc A=\frac{1}{\sin A} ; \sec A=\frac{1}{\cos A} ; \cot A=\frac{1}{\tan A}=\frac{\cos A}{\sin A}
\end{aligned}
$$

$$
\sin ^{2} A+\cos ^{2} A=1 ; \sec ^{2} A-\tan ^{2} A=1 ; \csc ^{2} A-\cot ^{2} A=1
$$

c. Functions of multiple angles.
$\sin 2 A=2 \sin A \cos A$
$\cos 2 A=2 \cos ^{2} A-1=1-2 \sin ^{2} A=\cos ^{2} A-\sin ^{2} A$
$\sin 3 A=3 \sin A-4 \sin ^{3} A$;
$\cos 3 A=4 \cos ^{3} A-3 \cos A$

d. Functions of half angles.

$\tan \frac{A}{2}= \pm \frac{1-\cos A}{\sin A}=\frac{\sin A}{1+\cos A}= \pm \sqrt{\frac{1-\cos A}{1+\cos A}}$
e. Powers of functions
$\sin ^{2} A=1 / 2(1-\cos 2 A) ; \quad \cos ^{2} A=1 / 2(1+\cos 2 A)$
$\sin ^{3} A=1 / 4(3 \sin A-\sin 3 A) ; A=1 / 4(\cos 3 A+3 \cos A)$
f. Sum and difference of angles.
$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
$\cos (A \pm)=\cos A \cos B \pm \sin A \sin B$
$\tan (A+B)=\frac{\tan A+\tan B}{1+\tan A \tan B}$

g. Sums, differences, and products of functions.

$\sin A \pm \sin B=2 \sin 1 / 2(A \pm B) \cos 1 / 2(A \pm B)$
$\cos A+\cos B=2 \cos 1 / 2(A+B) \cos 1 / 2(A-B)$
$\cos A-\cos B=-2 \sin 1 / 2(A+B) \sin 1 / 2(A-B)$
$\tan A \pm \tan B=\sin (A+B)$
$\cos A \cos B$

Table A-4. Useful constants and formulas (continued)

$\sin ^{2} A-\sin ^{2} B=\sin (A+B) \sin (A-B)$
$\cos ^{2} A-\cos ^{2} B=-\sin (A+B) ; \sin (A-B)$
$\cos ^{2} A-\sin ^{2} B=\cos (A+B) \cos (A-B)$
$\sin A \sin B=1 / 2 \cos (A-B)-1 / 2 \cos (A+B)$
$\cos A \cos B=1 / 2 \cos (A-B)+1 / 2 \cos (A+B)$
$\sin A \cos B=1 / 2 \sin (A+B)+1 / 2 \sin (A-B)$

The relations for angles greater than 90° are shown in the following tabulation where \times represents an angle in the first quadrant where all the functions are positive.

angle	$\sin e$	$\operatorname{cosin} e$	$\operatorname{tangent}$	$\operatorname{cotangent}$
x	$+\sin x$	$+\cos x$	$+\tan x$	$+\cot x$
$90^{\circ}+x$	$+\cos x$	$-\sin x$	$-\cot x$	$-\tan x$
$180^{\circ}+x$	$-\sin x$	$-\cos x$	$+\tan x$	$+\cot x$
$270^{\circ}+x$	$-\cos x$	$+\sin x$	$-\cot x$	$-\tan x$

GENERAL FORMULAS

24. $\sin A=2 \sin 1 / 2 A \cos 1 / 2 A=\sqrt{1-\cos ^{2} A=\tan A \cos A}$
25. $\cos A=2 \cos ^{2} 1 / 2 A-1=2 \sin ^{2} 1 / 2 A=\cos ^{2} 1 / 2$

$$
A-\sin ^{2} 1 / 2 A
$$

26. $\tan A=\frac{\sin A}{\cos A}=\frac{\sin 2 A}{1+\cos 2 A}$
27. $\cot A=\frac{\cos A}{\sin A}=\frac{\sin 2 A}{1-\cos 2 A}=\frac{\sin 2 A}{\operatorname{vers} 2 A}$
28. vers $A=1-\cos A=\sin A \tan 1 / 2 A=2 \sin ^{2} 1 / 2 A$
29. $\operatorname{exsec} A=\sec A-1=\tan A \tan 1 / 2 A=\frac{\operatorname{vers} A}{\cos A}$
30. $\sin 2 A=2 \sin A \cos A$
31. $\cos 2 A=2 \cos ^{2} A-1=\cos ^{2} A-\sin ^{2} A=1-2 \sin ^{2} A$
32. $\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}$
33. $\cot 2 A=\frac{\cot ^{2} A-1}{2 \cot A}$
34. vers $2 A=2 \sin ^{2} A=2 \sin A \cos A \tan A$
35. exsec $2 A=\frac{2 \tan ^{2} A}{1-\tan ^{2} A}$
36. $\sin ^{2} A+\cos ^{2} A=1$
37. $\sin (A \pm B)=\sin A \cdot \cos B \pm \sin B \cdot \cos A$
38. $\cos (A \pm B)=\cos A \cdot \cos B \pm \sin A \cdot \sin B$
39. $\sin A+\sin B=2 \sin 1 / 2(A+B) \cos 1 / 2(A-B)$
40. $\sin A-\sin B=2 \cos 1 / 2(A+B) \sin 1 / 2(A-B)$
41. $\cos A+\cos B=2 \cos 1 / 2(A+B) \cos 1 / 2(A-B)$
42. $\cos B-\cos A=2 \sin 1 / 2(A+B) \sin 1 / 2(A-B)$
43. $\sin ^{2} A-\sin ^{2} B=\cos ^{2} B-\cos ^{2} A$

$$
=\sin (A+B) \sin (A-B)
$$

44. $\cos ^{2} A-\sin ^{2} B=\cos (A+B) \cos (A-B)$
45. $\tan A+\tan B=\frac{\sin (A+B)}{\cos A \cdot \cos B}$
46. $\tan A-\tan B=\frac{\sin (A-B)}{\cos A \cdot \cos B}$
47. $\sin 3 A=3 \sin A-4 \sin ^{2} A$
48. $\cos 3 A=4 \cos ^{2} A-3 \cos A$
49. $\sin \frac{A}{2}= \pm \sqrt{\frac{1-\cos A}{2}}$

50. $\cos \frac{A}{2}= \pm \sqrt{\frac{1+\cos A}{2}}$	53. $\cos ^{2} A=1 / 2(1+\cos 2 A)$ $54 \cdot \sin ^{2} A=1 / 4(3 \sin A-\sin 3 A)$
51. $\tan \frac{A}{2}= \pm \frac{1-\cos A}{\sin A}=\frac{\sin A}{1+\cos A} A=1 / 4(\cos 3 A+3 \cos A)$	
$52 \cdot \sin ^{2} A=1 / 2(1-\cos 2 A)$	$56 \cdot \sin A \sin B=1 / 2 \cos (A-B)-1 / 2 \cos (A+B)$
$1+\cos A$	$57 \cdot \cos A \cos B=1 / 2 \cos (A-B)+1 / 2 \cos (A+B)$
$58 \cdot \sin A \cos B=1 / 2 \sin (A+B)+1 / 2 \sin A-B$	

	0°	30°	45°	60°	90°	120°	135°	150°	180°	270
Sine	0	1/2	1/2 $\sqrt{2}$	$1 / 2 \sqrt{3}$	1	$1 / 2 \quad \sqrt{3}$	1/2 $\sqrt{2}$	1/2	0	-1
Cosine	1	$1 / 2 \sqrt{3}$	$1 / 2 \sqrt{2}$	1/2	0	-1/2	$-1 / 2 \sqrt{2}$	$-1 / 2 \quad \sqrt{3}$	-1	0
Tangent...	0	$1 / 3 \sqrt{3}$	1	$\sqrt{3}$	$\pm \infty$	- $\sqrt{3}$	-1	$-1 / 3 \sqrt{3}$	0	$\pm \infty$
Cotangent .	$\pm \infty$	$\sqrt{3}$	1	$1 / 3 \sqrt{3}$	0	$-1 / 3 \sqrt{3}$	-1	$-\sqrt{3}$	$\pm \infty$	0
Secant	1	$2 / 3 \sqrt{3}$	$\sqrt{2}$	2	$\pm \infty$	-2	- $\sqrt{2}$	-2/3 $\sqrt{3}$	-1	$\pm \infty$
Cosecant ..	$\pm \infty$	2	$\sqrt{2}$	$2 / 3 \sqrt{3}$	1	$2 / 3 \quad \sqrt{3}$	$\sqrt{2}$	2	$\pm \infty$	-1

Lineal feet	x.00019	$=$ miles	1 radian	$=\underline{180^{\circ}}=57.2957790^{\circ}=57^{\circ} 17^{\prime} 44.88^{\prime \prime}$ (nearly)
Lineal yards	$\times .006$	$=$ miles		π
Square inches	$\times .007$	= square feet	1 radian	$=1018.6$ mile
Square feet	$\times .111$	= square yards	1 degree	$=0.0174533$ radians
Square yards	$\times .0002067$	= acres	1 minute	$=0.0002909$ radians
Acres	$\times 4840.0$	= square yards	1 mil	$=0.0009817$ radians
Cubic inches	$\times .00058$	= cubic feet	π radians	$=180^{\circ}$
Cubic feet	$\times .03704$	= cubic yards		
Links	x. 22	= yards	$\underline{\pi}$ radians	$=90^{\circ}$
Links	x. 66	= feet	2	
Feet	x. 15	$=$ links		

$$
360^{\circ}=21600^{\prime}=1296000^{\prime \prime}
$$

Circumference of circle ($r=$ radius) $=2 \pi r$, or πd
Radius $=$ arc of 57.2957790°
Arc of $1^{\circ}($ radius $=1)=.017453292$
Arc of 1 ' $($ radius $=1)=.000290888$
Arc of $1^{\prime \prime}($ radius $=1)=.000004848$

Area of circle ($r=$ radius)
πr^{2}
Area of sector of circle (length of arc $=\mathrm{L} ; \mathrm{r}=$ radius) $\ldots \ldots \ldots \ldots \ldots \ldots . . \ldots 1 / 2 \mathrm{Lr}$
Area of segment of parabola ($c=$ chord; $m=$ mid. ord.) $\ldots \ldots \ldots . \ldots . .2 / 3 \mathrm{~cm}$
Area of segment of circle (ap) .. 2/3 cm
$\pi \quad=3.141592654$.
$\sqrt[3]{\frac{6}{\pi}}=1.240700982$.
$\underline{\pi} \quad=0.785398163$.
$\pi^{2} \quad=9.869604401$.
$\frac{\pi}{6} \quad=0.523598776$.
$\frac{1}{\pi^{2}}=0.101321184$
$\sqrt{\frac{4}{\pi}}=1.128379167$.
$\sqrt{\pi}=1.772453851$.
$\underline{4 \pi}=4.188790205$.
$1=0.3183099$.
3 元

Curvature of Earth's surface $=$ about 0.7 foot in 1 mile.
Curvature in feet $=0.667$ (dist. in miles) ${ }^{2}$
Difference between arc and chord length, 0.02 foot in $111 / 2$ miles.

Table A-5. Functions of 1° curves

Functions of a 1° Curve. The long chords, mid-ordinates, externals, and tangent distances of this table are for a curve of 5730 feet radius. To find the corresponding functions of any other curve, divide the tabular values by the degree of curve. Values obtained from this table can be converted to the metric system by multiplying by 0.3048 .

Table A-5. Functions of 1° curves (continued)

	0°				$1{ }^{\circ}$				
	LC	M	E	T	LC	M	E	T	
0	0.00	0.000	0.000	0.00	100.00	0.218	0.218	50.00	0
2	3.33	0.000	0.000	1.67	103.33	0.233	0.233	51.67	2
4	6.67	0.001	0.001	3.33	106.66	0.248	0.248	53.33	4
6	10.00	0.002	0.002	5.00	110.00	0.264	0.264	55.00	6
8	13.33	0.004	0.004	6.67	113.33	0.280	0.280	56.67	8
10	16.67	0.006	0.006	8.33	116.66	0.297	0.297	58.33	10
12	20.00	0.009	0.009	10.00	120.00	0.314	0.314	60.00	12
14	23.33	0.012	0.012	11.67	123.33	0.332	0.332	61.67	14
16	26.67	0.015	0.015	13.33	126.66	0.350	0.350	63.33	16
18	30.00	0.019	0.019	15.00	130.00	0.368	0.368	65.00	18
20	33.33	0.024	0.024	16.67	133.33	0.388	0.388	66.67	20
22	36.67	0.029	0.029	18.33	136.66	0.407	0.407	68.33	22
24	40.00	0.035	0.035	20.00	140.00	0.427	0.427	70.00	24
26	43.33	0.041	0.041	21.67	143.33	0.448	0.448	71.67	26
28	46.67	0.048	0.048	23.33	146.66	0.469	0.469	73.33	28
30	50.00	0.054	0.054	25.00	150.00	0.491	0.491	75.00	30
32	53.33	0.062	0.062	26.67	153.33	0.513	0.513	76.67	32
34	56.67	0.070	0.070	28.33	156.66	0.536	0.536	78.33	34
36	60.00	0.079	0.079	30.00	160.00	0.559	0.559	80.00	36
38	63.33	0.088	0.088	31.67	163.33	0.582	0.582	81.67	38
40	66.67	0.097	0.097	33.33	166.66	0.606	0.606	83.33	40
42	70.00	0.107	0.107	35.00	170.00	0.630	0.630	85.00	42
44	73.33	0.117	0.117	36.67	173.33	0.655	0.655	86.67	44
46	76.67	0.128	0.128	38.33	176.66	0.681	0.681	88.33	46
48	80.00	0.140	0.140	40.00	180.00	0.706	0.706	90.00	48
50	83.33	0.151	0.151	41.67	183.33	0.733	0.733	91.67	50
52	86.67	0.164	0.164	43.33	186.66	0.760	0.760	93.33	52
54	90.00	0.176	0.176	45.00	190.00	0.788	0.788	95.00	54
56	93.33	0.190	0.190	46.67	193.33	0.815	0.815	96.67	56
58	96.67	0.204	0.204	48.33	196.66	0.844	0.844	98.33	58
60	100.00	0.218	0.218	50.00	199.98	0.873	0.873	100.00	60
	2°				3°				
	LC	M	E	T	LC	M	E	T	
0	199.98	0.873	0.873	100.00	299.96	1.964	1.964	150.07	0
2	203.31	0.902	0.902	101.67	303.29	2.008	2.009	151.74	2
4	206.64	0.932	0.932	103.34	306.62	2.053	2.054	153.41	4
6	209.97	0.962	0.962	105.01	309.95	2.098	2.099	155.08	6
8	213.31	0.993	0.993	106.68	313.29	2.143	2.144	156.75	8
10	216.64	1.024	1.024	108.35	316.62	2.188	2.189	158.42	10
12	219.97	1.056	1.056	110.02	319.95	2.225	2.236	160.09	12
14	223.30	1.088	1.088	111.69	323.28	2.282	2.283	161.76	14
16	226.64	1.121	1.121	113.36	326.62	2.329	2.330	163.43	16
18	229.97	1.154	1.154	115.02	329.95	2.376	2.377	165.09	18
20	233.30	1.188	1.188	116.69	333.28	2.424	2.425	166.76	20
22	236.63	1.222	1.222	118.36	336.61	2.473	2.474	168.43	22
24	239.97	1.256	1.256	120.03	339.95	2.523	2.523	170.10	24
26	243.30	1.292	1.292	121.70	343.28	2.572	2.573	171.77	26
28	246.63	1.328	1.328	123.37	346.61	2.622	2.623	173.44	28
30	249.96	1.364	1.364	125.03	349.94	2.672	2.673	175.10	30
32	253.29	1.399	1.399	126.70	353.27	2.724	2.725	176.72	32
34	256.62	1.437	1.437	128.37	356.60	2.776	2.777	178.39	34
36	259.96	1.475	1.475	130.04	359.94	2.828	2.829	180.06	36
38	263.29	1.513	1.513	131.71	363.27	2.880	2.881	181.73	38
40	266.62	1.552	1.552	133.38	366.60	2.933	2.934	183.40	40
42	269.96	1.592	1.592	135.05	369.94	2.987	2.988	185.07	42
44	273.29	1.632	1.632	136.72	373.27	3.042	3.043	186.74	44
46	276.62	1.672	1.672	138.38	376.60	3.096	3.097	188.40	46
48	279.96	1.712	1.712	140.05	379.94	3.151	3.152	190.07	48
50	283.29	1.752	1.752	141.72	383.27	3.206	3.207	191.74	50
52	286.62	1.794	1.794	143.39	386.60	3.263	3.264	193.41	52
54	289.96	1.836	1.836	145.06	389.94	3.320	3.321	195.08	54
56	293.29	1.878	1.878	146.73	393.27	3.377	3.378	196.75	56
58	296.62	1.921	1.921	148.40	396.60	3.434	3.435	198.42	58
60	299.96	1.964	1.964	150.07	399.94	3.491	3.942	200.09	60

Table A-5. Functions of 1° curves (continued)

	LC	M	E	T	LC	M	E	T	
0	399.94	3.491	3.492	200.09	499.88	5.454	5.459	250.17	0
2	403.27	3.550	3.551	201.76	503.21	5.527	5.533	251.84	2
4	406.60	3.609	3.610	203.43	506.54	5.601	5.607	253.51	4
6	409.93	3.668	3.670	205.10	509.87	5.675	5.681	255.18	6
8	413.26	3.727	3.730	206.77	513.20	5.749	5.755	256.85	8
10	416.59	3.787	3.790	208.44	516.53	5.823	5.829	258.52	10
12	419.92	3.848	3.851	210.11	519.86	5.899	5.905	260.20	12
14	423.26	3.910	3.913	211.77	523.19	5.975	5.981	261.86	14
16	426.59	3.972	3.975	213,45	526.52	6.052	6.058	263.54	16
18	429.92	4.034	4.037	215.11	529.85	6.129	6.135	265.20	18
20	433.25	4.096	4.099	216.78	533.18	6.206	6.212	266.87	20
22	436.58	4.160	4.163	218.45	536.51	6.284	6.290	268.54	22
24	439.91	4.224	4.227	220.12	539.84	6.362	6.369	270.21	24
26	443.24	4.288	4.291	221.79	543.17	6.441	6.448	271.88	26
28	446.58	4.353	4.356	223.46	546.50	6.520	6.527	273.54	28
30.	449.91	4.418	4.421	225.13	549.83	6.599	6.606	275.21	30
32	453.24	4.484	4.487	226.80	553.17	6.680	6.687	276.88	32
34	456.57	4.550	4.554	228.47	556.50	6.761	6.768	278.55	34
36	459.90	4.617	4.621	230.14	559.83	6.842	6.849	280.23	36
38	463.23	4.684	4.688	231.81	563.16	6.923	6.931	281.90	38
40	466.56	4.751	4.755	233.48	566.49	7.005	7.013	283.57	40
42	469.89	4.820	4.824	235.15	569.82	7.088	7.096	285.24	42
44	473.23	4.889	4.893	236.82	573.15	7.171	7.180	286.91	44
46	476.56	4.958	4.962	238.48	576.48	7.255	7.264	288.59	46
48	479.89	5.027	5.031	240.15	579.81	7.339	7.348	290.26	48
50	483.22	5.096	5.100	241.82	583.14	7.423	7.432	291.93	50
52	486.55	5.167	5.171	243.49	586.47	7.508	7.517	293.60	52
54	489.88	5.238	5.243	245.16	589.80	7.593	7.603	295.27	54
56	493.21	5.310	5.315	246.83	593.13	7.678	7.689	296.95	56
58	496.54	5.382	5.387	248.50	596.46	7.764	7.775	298.62	58
60	499.88	5.454	5.459	250.17	599.80	7.850	7.861	300.30	60
					7°				
	LC	M	E	T	LC	M	E	T	
0	599.80	7.850	7.861	300.30	699.90	10.69	10.71	350.44	0
2	603.13	7.940	7.951	301.97	702.93	10.79	10.81	352.11	2
4	606.46	8.030	8.041	303.64	706.26	10.90	10.92	353.79	4
6	609.78	8.120	8.131	305.31	709.58	11.00	11.02	355.46	6
8	613.11	8.210	8.221	306.98	712.91	11.11	11.13	357.13	8
10	616.44	8.300	8.311	308.65	716.24	11.21	11.23	358.81	10
12	619.76	8.390	8.401	310.32	719.56	11.31	11.33	360.48	12
14	623.09	8.480	8.491	311.99	722.89	11.42	11.44	362.15	14
16	626.42	8.570	8.581	313.66	726.21	11.52	11.54	363.83	16
18	629.74	8.660	8.671	315.33	729.53	11.63	11.65	365.50	18
20	633.07	8.750	8.761	317.00	732.86	11.73	11.75	367.17	20
22	636.40	8.844	8.856	318.67	736.19	11.84	11.86	368.85	22
24	639.72	8.939	8.951	320.34	739.51	11.95	11.97	370.52	24
26	643.05	9.033	9.046	322.01	742.84	12.06	12.08	372.19	26
28	646.38	9.128	9.141	323.68	746.17	12.17	12.19	373.86	28
30	649.70	9.222	9.236	325.35	749.49	12.27	12.30	375.54	30
32	653.03	9.317	9.331	327.02	752.82	12.38	12.41	377.22	32
34	656.36	9.411	9.426	328.69	756.15	12.49	12.52	378.89	
36	659.69	9.506	9.521	330.37	759.47	12.60	12.63	380.57	36
38	663.02	9.600	9.616	332.04	762.80	12.71	12.74	382.24	38
40	666.34	9.695	9.712	333.71	766.13	12.82	12.85	383.92	40
42	669.67	9.794	9.812	335.38	769.46	12.93	12.96	385.60	42
44	673.00	9.894	9.912	337.05	772.78	13.04	13.08	387.27	44
46	676.32	9.993	10.01	338.73	776.11	13.15	13.19	388.95	46
48	679.65	10.09	10.11	340.40	779.43	13.26	13.31	390.62	48
50	682.98	10.19	10.21	342.07	782.76	13.37	13.42	392.30	50
52	686.30	10.29	10.31	343.74	786.09	13.48	13.53	393.98	52
54	689.63	10.39	10.41	345.41	789.41	13.59	13.65	395.65	5
56	692.96	10.49	10.51	347.08	792.74	13.70	13.76	397.33	56
58	696.28	10.59	10.61	348.76	796.07	13.81	13.88	399.01	58
60	699.60	10.69	10.71	35	79	6	9	400.70	60

Table A-5. Functions of 1° curves (continued)

	L.C	M	E	T	LC	M	E	T	
0	998.8	21.80	21.89	501.32	1098.4	26.38	26.50	551.74	0
2	1002.1	21.94	22.03	503.00	1101.7	26.54	26.66	553.42	2
4	1005.4	22.09	22.18	504.68	1105.0	26.70	26.83	555.10	4
6	1008.8	22.24	22.33	506.36	1108.3	26.86	26.99	556.78	6
8	1012.1	22.39	22.48	508.04	1111.7	27.02	27.16	558.46	8
10	1015.4	22.54	22.63	509.72	1115.0	27.19	27.32	560.14	10
12	1018.7	22.68	22.78	511.40	1118.3	27.35	17.48	561.82	12
14	1022.0	22.83	22.93	513.08	1121.6	27.51	27.65	563.50	14
16	1025.4	22.98	23.08	514.76	1124.9	27.67	27.81	565.18	16
18	1028.7	23.13	23.23	516.44	1128.2	27.83	27.98	566.86	18
20	1032.0	23.28	23.38	518.12	1131.6	28.00	28.14	568.54	20
22	1035.3	23.43	23.53	519.80	1134.9	28.17	28.30	570.22	22
24	1038.6	25.58	23.68	521.48	1138.2	28.34	28.47	571.90	24
26	1042.0	23.73	23.84	523.16	1141.5	28.50	28.64	573.58	26
28	1045.3	23.88	23.99	524.85	1144.8	28.67	28.81	575.27	28
30	1048.6	24.04	24.14	526.53	1148.1	28.84	28.98	576.95	30
32	1051.9	24.19	24.30	528.21	1151.5	29.00	29.14	578.63	32
34	1055.2	24.34	24.45	529.89	1154.8	29.17	29.31	580.32	34
36	1058.6	24.49	24.60	531.57	1158.1	29.34	29.48	582.00	36
38	1061.9	24.64	24.76	533.25	1161.4	29.50	29.65	583.69	38
40	1065.2	24.80	24.91	534.93	1164.7	29.67	29.82	585.37	40
42	1068.5	24.95	25.06	536.61	1168.0	29.84	29.99	587.05	42
44	1071.8	25.11	25.22	538.29	1171.4	30.01	30.17	588.74	44
46	1075.2	25.27	25.38	539.97	1174.7	30.18	30.34	590.42	46
48	1078.5	25.43	25.54	541.65	1178.0	30.35	30.52	592.11	48
50	1081.8	25.59	25.70	543.33	1181.3	30.53	30.69	593.79	50
52	1085.1	25.74	25.86	545.01	1184.6	30.70	30.86	595.47	52
54	1088.4	25.90	26.02	546.69	1187.9	30.87	31.04	597.16	54
56	1091.8	26.06	26.18	548.37	1191.3	31.04	31.21	598.84	56
58	1095.1	26.22	26.34	550.06	1194.6	31.21	31.39	600.53	58
60	1098.4	26.38	26.50	551.74	1197.9	31.39	31.56	602.22	60

Table A-5. Functions of 1° curves (continued)

	12°				13°				
	LC	M	E	T	LC	M	E	T	
0	1197.9	31.39	31.56	602.22	1297.3	36.83	37.07	652.87	0
2	1201.2	31.57	31.73	603.91	1300.6	37.02	37.26	654.56	2
4	1204.5	31.74	31.91	605.60	1303.9	37.21	37.46	656.25	4
6	1207.8	31.92	32.09	607.28	1307.2	37.40	37.65	657.93	6
8	1211.1	32.09	32.37	608.97	1310.5	37.59	37.85	659.62	8
10	1214.5	32.27	32.45	610.66	1313.8	37.79	38.04	661.31	10
12	1217.8	32.45	32.63	612.35	1317.2	37.98	38.23	663.00	12
14	1221.1	32.62	32.81	614.04	1320.5	38.17	38.43	664.69	14
16	1224.4	32.80	32.99	615.72	1323.8	38.36	38.62	666.37	16
18	1227.7	32.97	33.17	617.41	1327.1	38.55	38.82	668.06	18
20	1231.0	33.15	33.35	619.10	1330.4	38.75	39.01	669.75	20
22	1234.3	33.33	33.53	620.79	1333.7	38.95	39.20	671.44	22
24	1237.7	33.51	33.72	622.48	1337.0	39.15	39.40	673.13	24
26	1241.0	33.69	33.90	624.16	1340.3	39.35	39.60	674.81	26
28	1244.3	33.87	34.09	625.85	1343.6	39.54	39.80	676.51	28
30	1247.6	34.06	34.27	627.55	1346.9	39.74	40.00	678.20	30
32	1250.9	34.24	34.45	629.24	1350.3	39.94	40.19	679.89	32
34	1254.2	34.42	34.64	630.93	1353.6	40.13	40.39	681.58	34
36	1257.5	34.60	34.82	632.61	1356.9	40.23	40.59	683.26	36
38	1260.8	34.78	35.01	634.30	1360.2	40.52	40.79	684.95	38
40	1264.2	34.97	35.19	635.99	1363.5	40.71	40.99	686.64	40
42	1267.5	35.16	35.37	637.68	1366.8	40.91	41.19	688.33	42
44	1270.8	35.34	35.56	639.37	1370.1	41.11	41.40	690.02	44
46	1274.1	35.53	35.75	641.05	1373.4	41.31	41.60	691.70	46
48	1277.4	35.71	35.94	642.74	1376.7	41.51	41.81	693.39	48
50	1280.7	35.90	36.13	644.43	1380.0	41.71	42.01	695.08	50
52	1284.0	36.09	36.31	646.12	1383.4	41.91	42.21	696.77	52
54	1287.4	36.27	36.50	647.81	1386.7	42.11	42.42	698.46	54
56	1290.7	36.46	36.69	649.49	1390.0	42.31	42.62	700.14	56
58	1294.0	36.64	36.88	651.18	1393.3	42.51	42.83	701.83	58
60	1297.3	36.83	37.07	652.87	1396.6	42.71	43.03	703.53	60
	14°				15°				
	LC	M	E	T	LC	M	E	T	
0	1396.6	42.71	43.03	703.53	1495.9	49.02	49.44	754.35	0
2	1399.9	42.92	43.23	705.23	1499.2	49.24	49.66	756.05	2
4	1403.2	43.12	43.44	706.92	1502.5	49.46	49.89	757.74	4
6	1406.5	43.33	43.65	708.62	1505.8	49.68	50.11	759.44	6
8	1409.8	43.53	43.86	710.31	1509.1	49.90	50.34	761.13	8
10	1413.1	43.74	44.07	712.01	1512.4	50.12	50.56	762.83	10
12	1416.5	43.94	44.28	713.71	1515.7	50.34	50.78	764.53	12
14	1419.8	44.15	44.49	715.40	1519.0	50.56	51.01	766.22	14
16	1423.1	44.35	44.70	717.10	1522.3	50.78	51.23	767.92	16
18	1426.4	44.56	44.91	718.79	1525.6	51.00	51.46	769.61	18
20	1429.7	44.77	45.12	720.49	1528.9	51.22	51.68	771.31	20
22	1433.0	44.98	45.33	722.20	1532.2	51.44	51.90	773.01	22
24	1436.3	45.19	45.54	723.89	1535.5	51.67	52.13	774.70	24
26	1439.6	45.40	45.76	725.59	1538.8	51.89	52.36	776.40	26
28	1442.9	45.61	45.97	727.28	1542.1	52.12	52.59	778.09	28
30	1446.2	45.82	46.18	728.97	1545.4	52.34	52.82	779.79	30
32	1449.6	46.03	46.60	730.66	1548.7	52.57	53.05	781.49	32
34	1452.9	46.24	46.61	732.35	1552.0	52.79	53.28	783.19	34
36	1456.2	46.45	46.82	734.05	1555.3	53.02	53.51	784.89	36
38	1459.5	46.66	47.04	735.74	1558.6	53.24	53.74	786.59	38
40	1462.8	46.87	47.25	737.43	1561.9	53.47	53.97	788.29	40
42	1466.1	47.08	47.46	739.12	1565.2	53.69	54.20	789.99	42
44	1469.4	47.30	47.68	740.81	1568.5	53.92	54.44	791.69	44
46	1472.7	47.51	47.90	742.51	1571.8	54.15	54.67	793.39	46
48	1476.0	47.73	48.12	744.20	1575.1	54.38	54.91	795.09	48
50	1479.3	47.94	48.34	745.89	1578.4	54.61	55.14	796.79	50
52	1482.7	48.16	48.56	747.58	1581.7	54.84	55.37	798.49	52
54	1486.0	48.37	48.78	749.27	1585.0	55.07	55.61	800.19	54
56	1489.3	48.59	49.00	750.97	1588.3	55.30	55.84	801.89	56
58	1492.6	48.80	49.22	752.66	1591.6	55.53	56.08	803.59	58
60	1495.9	49.02	49.44	754.35	1594.9	55.76	56.31	805.29	60

Table A-5. Functions of 1° curves (continued)

Table A-5. Functions of 1° curves (continued)

	20°				21°				
	LC	M	E	T	LC	M	E	T	
0	1990.0	87.50	88.39	1010.4	2088.5	95.95	97.58	1062.0	0
2	1993.3	87.34	88.69	1012.1	2091.8	96.26	97.90	1063.7	2
4	1996.6	87.63	88.99	1013.8	2095.0	96.56	98.21	1065.4	4
6	1999.8	87.92	89.29	1015.5	2098.3	96.87	98.53	1067.2	6
8	2003.1	88.21	89.59	1017.2	2101.6	97.17	98.84	1068.9	8
10	2006.4	88.50	89.89	1019.0	2104.9	97.48	99.16	1070.6	10
12	2009.7	88.79	90.19	1020.7	2108.1	97.79	99.48	1072.4	12
14	2013.0	89.08	90.49	1022.4	2111.4	98.09	99.79	1074.1	14
16	2016.3	89.37	90.79	1024.1	2114.7	98.40	100.1	1075.8	16
18	2019.5	89.66	91.09	1025.8	2118.0	98.70	100.4	1077.5	18
20	2022.8	89.96	91.40	1027.6	2121.2	99.00	100.7	1079.3	20
22	2026.1	90.25	91.71	1029.3	2124.5	99.39	101.1	1081.0	22
24	2029.4	90.65	92.01	1031.0	2127.8	99.60	101.4	1082.7	24
26	2032.7	90.86	92.32	1032.7	2131.0	99.90	101.7	1084.4	26
28	2036.0	91.15	92.62	1034.4	2134.3	100.2	102.0	1086.2	28
30	2039.2	91.45	92.93	1036.1	2137.6	100.5	102.3	1087.9	30
32	2042.5	91.74	93.24	1037.9	2140.9	100.8	102.7	1089.6	32
34	2045.8	92.04	93.54	1039.6	2144.1	101.1	103.0	1091.3	34
36	2049.1	92.34	93.85	1041.3	2147.4	101.4	103.3	1093.1	36
38	2052.4	92.64	94.15	1043.0	2150.7	101.7	103.6	1094.8	38
40	2056.7	92.94	94.46	1044.8	2154.0	102.1	104.0	1096.5	40
42	2058.9	93.24	94.78	1046.5	2157.2	102.4	104.3	1098.3	42
44	2062.2	93.54	95.09	1048.2	2160.5	102.7	104.6	1100.0	44
46	2065.5	93.84	95.40	1049.9	2163.8	103.0	104.9	1101.7	46
48	2068.8	94.14	95.71	1051.7	2167.1	103.3	105.3	1103.4	48
60	2072.1	94.44	96.03	1063.4	2170.3	103.6	106.6	1106.2	60
62	2075.4	94.74	96.34	1056.1	2173.6	103.9	105.9	1106.9	62
64	2078.6	95.04	96.65	1056.8	2176.9	104.2	106.3	1108.6	64
56	2081.9	95.34	96.96	1058.6	2180.1	104.6	106.6	1110.3	56
58	2085.2	95.64	97.27	1060.3	2183.4	104.8	106.9	1112.1	58
60	2088.5	95.95	97.58	1062.0	2186.7	105.2	107.2	1113.8	60
	22°				23°				
	LC	M	E	T	LC	M	E	T	
0	2186.7	105.2	107.2	1113.8	2284.8	116.0	117.4	1165.8	0
2	2190.0	105.6	107.6	1115.6	2288.1	116.3	117.7	1167.5	2
4	2193.2	105.9	107.9	1117.3	2291.3	116.7	118.1	1169.2	4
6	2196.6	106.2	108.2	1119.0	2294.6	116.0	118.4	1171.0	6
8	2199.8	106.6	108.6	1120.7	2297.8	116.4	118.8	1172.7	8
10	2203.0	106.8	108.9	1122.4	2301.1	116.7	119.1	1174.4	10
12	2206.3	107.1	109.2	1124.2	2304.4	117.0	119.5	1176.5	12
14	2209.6	107.4	109.6	1126.9	2307.6	117.4	119.8	1177.9	14
16	2212.9	107.7	109.9	1127.6	2310.9	117.7	120.4	1179.7	16
18	2216.1	108.0	110.2	1129.4	2314.1	118.1	120.5	1181.4	18
20	2219.4	108.4	110.6	1131.1	2317.4	118.4	120.9	1183.1	20
22	2222.7	108.7	110.9	1132.8	2320.7	118.7	121.2	1184.9	22
24	2225.9	109.0	111.2	1134.6	2323.9	119.1	121.6	1186.6	24
26	2229.2	109.4	111.6	1136.3	2327.2	119.4	121.9	1188.4	26
28	2232.5	109.7	111.9	1138.0	2330.4	119.8	122.3	1190.1	28
30	2235.7	110.0	112.3	1139.7	2333.7	120.1	122.6	1191.8	30
32	2239.0	110.4	112.6	1141.5	2337.0	120.4	123.0	1193.6	32
34	2242.3	110.7	112.9	1143.2	2340.2	120.8	123.3	1195.3	34
36	2245.6	111.0	113.3	1144.9	2343.5	121.1	123.7	1197.1	36
38	2248.8	111.4	113.6	1146.7	2346.7	121.5	124.1	1198.8	38
40	2252.1	111.7	113.9	1148.4	2350.0	121.8	124.4	1200.5	40
42	2255.4	112.0	114.3	1150.1	2353.3	122.1	124.8	1202.3	42
44	2258.6	112.3	114.6	1151.9	2356.5	122.5	125.1	1204.0	44
46	2261.9	112.7	115.0	1153.6	2359.8	122.8	125.5	1205.8	46
48	2265.2	113.0	115.3	1155.4	2363.0	123.2	125.8	1207.5	48
50	2268.4	113.3	115.7	1157.1	2366.3	123.5	126.2	1209.2	50
52	2271.7	113.7	116.0	1158.8	2369.6	123.8	126.6	1211.0	52
54	2275.0	114.0	116.3	1160.6	2372.8	124.2	126.9	1212.7	54
56	2278.3	114.3	116.7	1162.3	2376.1	124.5	127.3	1214.5	56
58	2281.5	114.7	117.0	1164.0	2379.3	124.9	127.6	1216.2	58
60	2284.8	115.0	117.4	1165.8	2382.6	125.2	128.0	1218.0	60

A-70

Table A-5. Functions of 1° curves (continued)

	24°				25°				
	LC	M	E	T	LC	M	E	T	
0	2382.6	125.2	128.0	1218.0	2480.4	135.8	139.1	1270.3	0
2	2385.9	125.5	128.4	1219.7	2483.6	136.2	139.5	1272.0	2
4	2389.1	125.9	128.7	1221.4	2486.9	136.5	139.9	1273.8	4
6	2392.4	126.2	129.1	1223.2	2490.1	136.9	140.3	1275.5	6
8	2395.6	126.6	129.5	1224.9	2493.4	137.2	140.6	1277.3	8
10	2398.9	126.9	129.8	1226.7	2496.6	137.6	121.0	1279.0	10
12	2402.2	127.3	130.2	1228.4	2499.9	138.0	121.4	1280.8	12
14	2405.4	127.6	130.6	1230.2	2503.1	138.3	121.8	1282.5	14
16	2408.7	128.0	130.9	1231.9	2506.4	138.7	142.2	1284.3	16
18	2411.9	128.3	131.3	1233.6	2509.6	139.0	142.5	1286.1	18
20	2415.2	128.7	131.7	1235.4	2512.9	139.4	142.9	1287.8	20
22	2418.5	129.0	132.0	1237.1	2516.1	139.8	143.3	1289.6	22
24	2421.7	129.4	132.4	1238.9	2519.4	140.1	143.7	1291.3	24
26	2425.0	129.7	132.8	1240.6	2522.6	140.5	144.1	1293.1	26
28	2428.2	130.1	133.1	1242.4	2525.9	140.8	144.5	1294.8	28
30	2431.5	130.4	133.5	1244.1	2529.1	141.2	144.9	1296.6	30
32	2434.8	130.8	133.9	1245.8	2532.4	141.6	145.3	1298.3	32
34	2438.0	131.1	134.2	1247.6	2535.6	142.0	145.6	1300.1	34
36	2441.3	131.5	134.6	1249.3	2538.9	142.3	146.0	1301.8	36
38	2444.5	131.8	136.0	1251.1	2542.1	142.7	146.4	1303.6	38
40	2447.8	132.2	135.4	1252.8	2545.4	143.1	146.8	1305.3	40
42	2451.1	132.6	135.7	1254.6	2548.6	143.5	147.2	1307.1	42
44	2454.3	132.9	136.1	1256.3	2551.9	143.8	147.6	1308.8	44
46	2457.6	133.3	136.5	1258.1	2555.1	144.2	148.0	1310.6	46
48	2460.8	133.6	136.9	1259.8	2558.4	144.5	148.4	1312.4	48
50	2464.1	134.0	137.2	1261.5	2561.6	144.9	148.8	1314.1	50
52	2467.4	134.4	137.6	1263.3	2564.9	146.3	149.2	1315.9	52
54	2470.6	134.7	138.0	1285.0	2568.1	145.7	149.5	1317.6	54
56	2473.9	135.1	138.4	1286.8	2571.4	146.0	149.9	1319.4	56
$\begin{aligned} & 68 \\ & 60 \end{aligned}$	2477.1	135.4	138.7	1268.5	2574.6	146.4	160.3	1321.1	58
	2480.4	135.8	139.1	1270.3	2577.9	146.8	150.7	1322.9	60
	26°				27°				
	LC	M	E	T	LC	M	E	T	
0	2577.9	146.8	150.7	1322.8	2675.3	168.3	162.8	1376.6	0
2	2581.1	147.1	151.9	1324.6	2678.5	158.6	163.2	1377.4	2
4	2584.4	147.6	161.6	1326.4	2681.8	169.0	163.7	1379.2	4
6	2587.6	147.9	151.9	1328.1	2685.0	159.4	164.1	1380.9	6
8	2590.9	148.3	162.3	1329.9	2888.2	159.8	164.5	1382.7	8
10	2594.1	148.7	152.7	1331.6	2691.6	160.2	164.9	1384.5	10
12	2597.4	149.1	153.1	1333.4	2694.7	160.6	165.3	1388.2	12
14	2600.6	149.4	153.5	1335.2	2698.0	161.0	165.7	1388.0	14
16	2603.9	149.8	153.9	1336.9	2701.2	161.4	166.1	1389.8	16
18	2607.1	150.2	154.3	1338.7	2704.4	161.8	166.5	1391.5	18
20	2610.4	150.6	154.7	1340.4	2707.7	162.2	167.0	1393.3	20
22	2613.6	151.0	155.1	1342.2	2710.9	162.6	167.4	1395.0	22
24	2616.9	151.4	155.5	1343.9	2714.1	163.0	167.8	1396.8	24
26	2620.1	151.7	155.9	1345.7	2717.4	163.4	168.2	1398.6	26
28	2623.4	152.1	156.3	1347.4	2720.6	163.8	168.6	1400.3	28
30	2626.6	152.5	156.7	1349.2	2723.8	164.2	169.1	1402.1	30
32	2629.8	152.9	157.1	1351.0	2727.1	164.6	169.5	1403.9	32
34	2633.1	153.3	157.5	1352.7	2730.3	165.0	169.9	1405.6	34
36	2636.3	153.7	157.9	1354.5	2733.6	165.4	170.3	1407.4	36
38	2639.6	154.0	158.3	1356.2	2736.8	165.8	170.8	1409.2	38
40	2642.8	154.4	158.7	1358.0	2740.0	166.2	171.2	1410.9	40
42	2646.1	154.8	159.1	1359.8	2743.3	166.6	171.6	1412.7	42
44	2649.3	155.2	159.5	1361.5	2746.5	167.0	172.0	1414.5	44
46	2652.6	155.6	160.0	1363.3	2749.7	167.4	172.5	1416.3	46
48	2655.8	156.0	160.4	1365.1	2753.0	167.8	172.9	1418.0	48
50	2659.1	156.3	160.8	1366.8	2756.2	168.2	173.3	1419.8	50
52	2662.3	156.7	161.2	1368.6	2759.5	168.6	173.7	1421.6	52
54	2665.6	157.1	161.6	1370.4	2762.7	169.0	174.1	1423.3	54
56	2668.8	157.5	162.0	1372.1	2765.9	169.4	174.6	1425.1	56
58	2672.1	157.9	162.4	1373.9	2769.2	169.8	175.0	1426.9	58
60	2675.3	158.3	162.8	1375.6	2772.4	170.2	175.4	1428.6	60

Table A-5. Functions of 1° curves (continued)

	LC	M	E	T	LC	M	E	7	
0	2772.4	170.2	175.4	1428.6	2869.4	182.5	188.5	1481.9	0
2	2775.6	170.6	175.8	1430.4	2872.6	182.9	189.0	1483.7	2
4	2778.9	171.0	176.3	1432.2	2875.8	183.3	189.4	1485.4	4
6	2782.1	171.4	176.7	1434.0	2879.1	183.7	189.9	1487.2	6
8	2785.3	171.8	177.1	1435.7	2882.3	184.2	190.3	1489.0	8
10	2788.6	172.2	177.6	1437.5	2885.5	184.6	190.8	1490.8	10
12	2791.8	172.6	178.0	1439.3	2888.7	185.0	191.2	1492.6	12
14	2795.0	173.0	178.4	1441.1	2892.0	185.4	191.7	1494.3	14
16	2798.3	173.4	178.9	1442.8	2895.2	185.8	192.1	1496.1	16
18	2801.5	173.8	179.3	1444.6	2898.4	186.3	192.5	1497.9	18
20	2804.7	174.3	179.7	1446.4	2901.6	186.7	193.0	1499.7	20
22	2808.0	174.7	180.2	1448.2	2904.8	187.1	193.5	1501.5	22
24	2811.2	175.1	180.6	1449.9	2908.1	187.5	193.9	1503.2	24
26	2814.4	175.5	181.0	1451.7	2911.3	188.0	194.4	1505.0	26
28	2817.7	175.9	181.5	1453.5	2914.5	188.4	194.8	1506.8	28
30	2820.9	176.3	181.9	1455.2	2917.7	188.8	195.3	1508.6	30
32	2824.1	176.7	182.3	1457.0	2921.0	189.2	195.7	1510.4	32
34	2827.4	177.1	182.8	1458.8	2924.2	189.7	196.2	1512.1	34
36	2830.6	177.5	183.2	1460.6	2927.4	190.1	196.7	1513.9	36
38	2833.8	177.9	183.6	1462.3	2930.6	190.5	197.1	1515.7	38
40	2837.1	178.4	184.1	1464.1	2933.9	190.9	197.6	1517.5	40
42	2840.3	178.8	184.5	1465.9	2937.1	191.4	198.0	1519.3	42
44	2843.5	179.2	185.0	1467.7	2940.3	191.9	198.5	1521.0	44
46	2846.8	179.6	185.4	1469.5	2943.5	192.4	198.9	1522.8	46
48	2850.0	180.0	185.9	1471.2	2946.8	192.8	199.4	1524.6	48
50	2853.2	180.4	186.3	1473.0	2950.0	193.2	199.8	1526.4	50
52	2856.5	180.8	186.8	1474.8	2953.2	193.6	200.3	1528.2	52
54	2859.7	181.2	187.2	1476.6	2956.4	194.0	200.8	1530.0	54
56	2862.9	181.6	187.6	1478.3	2959.6	194.4	201.2	1531.7	56
58	2866.2	182.0	188.1	1480.1	2962.9	194.8	201.7	1533.5	58
60	2869.4	182.5	188.5	1481.9	2966.1	195.2	202.1	1535.3	60
	30°			31°					
	LC	M	E	T	LC	M	E	T	
0	2966.1	195.2	202.1	1535.3	3062.6	208.4	216.3	1589.0	0
2	2969.3	195.6	202.6	1537.1	3065.8	208.8	216.8	1590.8	2
4	2972.5	196.1	203.1	1538.9	3069.0	209.3	217.2	1592.6	4
6	2975.7	196.5	203.5	1540.7	3072.2	209.7	217.7	1594.4	6
8	2979.0	197.0	204.0	1542.5	3075.4	210.2	218.2	1596.2	8
10	2982.2	197.4	204.5	1544.3	3078.6	210.6	218.7	1598.0	10
12	2985.4	197.8	204.9	1546.0	3081.8	211.1	219.2	1599.8	12
14	2988.6	198.2	205.4	1547.8	3085.0	211.5	219.6	1601.6	14
16	2991.8	198.6	205.9	1549.6	3088.3	212.0	220.1	1603.4	16
18	2995.0	199.1	206.3	1551.4	3091.5	212.4	220.6	1605.2	18
20	2998.3	199.5	206.8	1553.2	3094.7	212.9	221.1	1607.0	20
22	3001.5	199.9	207.3	1555.0	3097.9	213.3	221.6	1608.8	22
24	3004.7	200.4	207.7	1556.8	3101.1	213.8	222.1	1610.6	24
26	3007.9	200.8	208.2	1558.6	3104.3	214.2	222.6	1612.4	26
28	3011.1	201.3	208.7	1560.4	3107.5	214.7	223.0	1614.2	28
30	3014.3	201.7	209.1	1562.2	3110.7	215.1	223.5	1616.0	30
32	3017.6	202.1	209.6	1564.0	3113.9	215.6	224.0	1617.8	32
34	3020.8	202.6	210.1	1565.7	3117.1	216.0	224.5	1619.6	34
36	3024.0	203.0	210.5	1567.5	3120.3	216.5	225.0	1621.4	36
38	3027.2	203.5	211.0	1569.3	3123.5	216.9	225.5	1623.2	38
40	3030.4	203.9	211.5	1571.1	3126.7	217.4	226.0	1625.0	40
42	3033.6	204.3	212.0	1572.9	3129.9	217.8	226.5	1626.8	42
44	3036.9	204.8	212.4	1574.7	3133.1	218.3	227.0	1628.6	44
46	3040.1	205.2	212.9	1576.5	3136.4	218.7	227.5	1630.5	46
48	3043.3	205.7	213.4	1578.3	3139.6	219.2	228.0	1632.3	48
50	3046.5	206.1	213.9	1580.1	3142.8	219.6	228.4	1634.1	50
52	3049.7	206.5	214.4	1581.9	3146.0	220.1	228.9	1635.9	52
54	3052.9	207.0	214.8	1583.7	3149.2	220.5	229.4	1637.7	54
56	3056.2	207.4	215.3	1585.5	3152.4	221.0	229.9	1639.5	56
58	3059.4	207.9	215.8	1587.2	3155.6	221.5	230.4	1641.3	58
60	3062.6	208.4	216.3	1689.0	3158.8	222.0	230.9	1643.1	60

Table A-5. Functions of 1° curves (continued)

	32°				33°				
	LC	M	E	T	LC	M	E	T	
0	3158.8	222.0	230.9	1643.1	3245.9	236.0	246.1	1697.3	0
2	3162.0	222.5	231.4	1644.9	3258.1	236.4	246.6	1699.1	2
4	3165.2	222.9	231.9	1646.7	3261.3	236.9	247.1	1700.9	4
6	3168.4	223.4	232.4	1648.5	3264.5	237.4	247.7	1702.7	6
8	3171.6	223.8	232.9	1650.3	3267.7	237.9	248.2	1704.5	8
10	3174.8	224.3	233.4	1652.1	3270.8	238.4	248.7	1706.4	10
12	3178.0	224.8	233.9	1653.9	3274.0	238.9	249.2	1708.2	12
14	3181.2	225.2	234.4	1655.7	3277.2	239.3	249.7	1710.0	14
16	3184.4	225.7	234.9	1657.5	3280.4	239.8	250.2	1711.8	16
18	3187.6	226.1	235.4	1659.3	3283.6	240.3	250.8	1713.6	18
20	3190.8	226.6	235.9	1661.1	3286.8	240.8	251.3	1715.5	20
22	3194.0	227.1	236.4	1662.9	3290.0	241.2	251.8	1717.3	22
24	3197.2	227.5	236.9	1664.7	3293.2	241.7	252.3	1719.1	24
26	3200.4	228.0	237.4	1666.5	3296.4	242.2	252.9	1720.9	26
28	3203.6	228.4	237.9	1668.3	3299.6	242.7	253.4	1722.7	28
30	3206.8	228.9	238.4	1670.1	3302.7	243.2	253.9	1724.6	30
32	3210.0	229.4	239.0	1671.9	3305.9	243.6	254.4	1726.4	32
34	3213.2	229.8	239.5	1673.7	3309.1	244.1	255.0	1728.2	34
36	3216.5	230.3	240.0	1675.5	3312.3	244.6	255.5	1730.0	36
38	3219.7	230.7	240.5	1677.4	3315.5	245.1	256.0	1731.8	38
40	3222.9	231.2	241.0	1679.2	3318.7	245.6	256.5	1733.6	40
42	3226.1	231.7	241.5	1681.0	3321.9	246.0	257.1	1735.5	42
44	3229.3	232.2	242.0	1682.8	3325.1	246.5	257.6	1737.3	44
46	3232.5	232.6	242.5	1684.6	3328.3	247.0	258.1	1739.1	46
48	3235.7	233.1	243.0	1686.4	3331.5	247.5	258.6	1740.9	48
50	3238.9	233.5	243.5	1688.2	3334.6	248.0	259.2	1742.7	50
52	3242.1	234.0	244.1	1690.0	3337.8	248.4	259.7	1744.6	52
54	3245.3	234.5	244.6	1691.8	3341.0	248.9	260.2	1746.4	54
56	3248.5	235.0	245.1	1693.7	3344.2	249.4	260.8	1748.2	56
58	3251.7	235.5	245.6	1695.5	3347.4	249.9	261.3	1750.0	58
60	3254.9	236.0	246.1	1697.3	3350.6	250.4	261.8	1751.8	60
	34°				35°				
	LC	M	E	T	LC	M	E	T	
0	3350.6	250.4	261.8	1751.8	3446.1	265.2	278.1	1806.7	0
2	3353.8	250.8	262.3	1753.7	3449.3	265.7	278.6	1808.5	2
4	3357.0	251.2	262.9	1755.5	3452.5	266.2	279.2	1810.3	4
6	3360.1	251.7	263.4	1757.3	3455.6	266.7	279.7	1812.2	6
8	3363.3	252.2	264.0	1759.1	3458.8	267.2	280.3	1814.0	8
10	3366.5	252.7	264.5	1761.0	3462.0	267.7	280.8	1815.8	10
12	3369.7	253.2	265.0	1762.8	3465.2	268.2	281.4	1817.7	12
14	3372.9	253.7	265.6	1764.6	3468.3	268.7	281.9	1819.5	14
16	3376.1	254.2	266.1	1766.4	3471.5	269.2	282.5	1821.3	16
18	3379.2	254.7	266.7	1768.3	3474.7	269.7	283.0	1823.2	18
20	3382.4	255.2	267.2	1770.1	3477.9	270.2	283.6	1825.0	20
22	3385.6	255.7	267.7	1771.9	3481.0	270.7	284.2	1826.8	22
24	3388.8	256.2	268.3	1773.7	3484.2	271.2	284.7	1828.7	24
26	3392.0	256.7	268.8	1775.6	3487.4	271.7	285.3	1830.5	26
28	3395.2	257.2	269.3	1777.4	3490.6	272.2	285.9	1832.3	28
30	3398.3	257.7	269.9	1779.2	3493.7	272.7	286.4	1834.2	30
32	3401.5	258.2	270.4	1781.0	3496.9	273.2	287.0	1836.0	32
34	3404.7	258.7	271.0	1782.9	3500.1	273.7	287.5	1837.8	34
36	3407.9	259.2	271.5	1784.7	3503.3	274.2	288.1	1839.7	36
38	3411.1	259.7	272.0	1786.5	3506.5	274.7	288.7	1841.5	38
40	3414.3	260.2	272.6	1788.4	3509.6	275.2	289.2	1843.4	40
42	3417.4	260.7	273.1	1790.2	3512.8	275.7	289.8	1845.2	42
44	3420.6	261.2	273.7	1792.0	3516.0	276.2	290.4	1847.1	44
46	3423.8	261.7	274.2	1793.9	3519.2	276.7	290.9	1848.9	46
48	3427.0	262.2	274.8	1795.7	3522.3	277.2	291.5	1850.7	48
50	3430.2	262.7	275.3	1797.5	3525.5	277.7	292.0	1852.6	50
52	3433.4	263.2	275.9	1799.3	3528.7	278.2	292.6	1854.4	52
54	3436.5	263.7	276.4	1801.2	3531.9	278.7	293.2	1856.3	54
56	3439.7	264.2	277.0	1803.0	3535.0	279.2	293.7	1858.1	56
58	3442.9	264.7	277.5	1804.8	3538.2	279.8	294.3	1859.9	58
60	3446.1	265.2	278.1	1806.7	3241.4	280.4	294.9	1861.8	60

Table A-5. Functions of 1° curves (continued)

	LC	M	E	T	LC	M	E	T	
0	3541.4	280.4	294.9	1861.8	3636.3	296.1	312.3	1917.3	0
2	3544.6	280.9	295.4	1863.6	3639.5	296.6	312.8	1919.1	2
4	3547.7	281.4	296.0	1865.5	3642.6	297.1	313.4	1921.0	4
6	3550.9	281.9	296.6	1867.3	3645.8	297.7	314.0	1922.8	6
8	3554.0	282.5	297.2	1869.2	3648.9	298.2	314.6	1924.7	8
10	3557.2	283.0	297.7	1871.0	3652.1	298.7	315.2	1926.5	10
12	3560.4	283.5	298.3	1872.9	3655.2	299.3	315.8	1928.4	12
14	3563.5	284.0	298.9	1874.7	3658.4	299.8	316.4	1930.2	14
16	3566.7	284.6	299.5	1876.5	3661.6	300.3	317.0	1932.1	16
18	3569.9	285.1	300.0	1878.4	3664.7	300.9	317.5	1933.9	18
20	3573.0	285.6	300.6	1880.2	3667.9	301.4	318.1	1935.8	20
22	3576.2	286.1	301.2	1882.1	3671.0	301.9	318.7	1937.6	22
24	3579.4	286.7	301.8	1883.9	3674.2	302.5	319.3	1939.5	24
26	3582.5	287.2	302.3	1885.8	3677.3	303.0	319.9	1941.3	26
28	3585.7	287.7	302.9	1887.6	3680.5	303.5	320.5	1943.2	28
30	3588.8	288.2	303.5	1889.5	3683.6	304.1	321.1	1945.0	30
32	3592.0	288.8	304.1	1891.3	3686.8	304.6	321.7	1946.9	32
34	3595.2	289.3	304.6	1893.2	3690.0	305.1	322.3	1948.8	34
36	3598.3	289.8	305.2	1895.0	3693.1	305.7	322.9	1950.6	36
38	3601.5	290.3	305.8	1896.9	3696.3	306.2	323.5	1952.5	38
40	3604.7	290.9	306.4	1898.7	3699.4	306.7	324.2	1954.4	40
42	3607.8	291.4	307.0	1900.6	3702.6	307.3	324.8	1956.2	42
44	3611.0	291.9	307.5	1902.4	3705.7	307.8	325.4	1958.1	44
46	3614.1	292.4	308.1	1904.3	3708.9	308.3	326.0	1960.0	46
48	3617.3	293.0	308.7	1906.1	3712.1	308.9	326.6	1961.8	48
50	3620.5	293.5	309.3	1908.0	3715.2	309.4	327.2	1963.7	50
52	3623.6	294.0	309.9	1909.8	3718.4	309.9	327.8	1965.5	52
54	3626.8	294.5	310.5	1911.7	3721.5	310.5	328.4	1967.4	54
56	3630.0	295.1	311.1	1913.5	3724.7	311.0	329.0	1969.3	56
58	3633.1	295.6	311.7	1915.4	3727.8	311.6	329.6	1971.1	58
60	3636.3	296.1	312.3	1917.3	3731.0	312.2	330.2	1973.0	60
	38°				39°				
	LC	M	E	T	LC	M	E	T	
0	3731.0	312.2	330.2	1973.0	3825.5	328.7	348.7	2029.1	0
2	3734.1	312.7	330.8	1974.9	3828.6	329.2	349.3	2031.0	2
4	3737.3	313.3	331.4	1976.7	3831.8	329.8	349.9	2032.9	4
6	3740.4	313.8	332.0	1978.6	3834.9	330.3	350.6	2034.7	6
8	3743.6	314.4	332.6	1980.5	3838.0	330.9	351.2	2036.6	8
10	3746.7	314.9	333.2	1982.3	3841.2	331.5	351.8	2038.5	10
12	3749.9	315.5	333.8	1984.2	3844.3	332.0	352.4	2040.4	12
14	3753.0	316.0	334.5	1986.1	3847.4	332.6	353.1	2042.3	14
16	3756.2	316.6	335.1	1987.9	3850.6	333.2	353.7	2044.1	16
18	3759.3	317.1	335.7	1989.8	3853.7	333.7	354.3	2046.0	18
20	3762.5	317.7	336.3	1991.7	3856.8	334.3	354.0	2047.9	20
22	3765.6	318.2	336.9	1993.6	3860.0	334.9	355.6	2049.8	22
24	3768.8	318.8	337.5	1995.4	3863.1	335.4	356.2	2051.7	24
26	3771.9	319.3	338.1	1997.3	3866.2	336.0	356.9	2053.5	26
28	3775.1	319.9	338.7	1999.2	3869.4	336.6	357.5	2055.4	28
30	3778.2	320.4	339.4	2001.0	3872.5	337.1	358.1	2057.3	30
32	3781.4	321.0	340.0	2002.9	3875.6	337.7	358.8	2059.2	32
34	3784.5	321.5	340.6	2004.8	3878.8	338.3	359.4	2061.1	34
36	3787.7	322.1	341.2	2006.6	3881.9	338.8	360.1	2063.0	36
38	3790.8	322.6	341.8	2008.5	3885.0	339.4	360.7	2064.8	38
40	3794.0	323.2	342.4	2010.4	3888.2	340.0	361.3	2066.7	40
42	3797.1	323.7	343.1	2012.3	3891.3	340.5	362.0	2068.6	42
44	3800.3	324.3	343.7	2014.1	3894.4	341.1	362.6	2070.5	44
46	3803.4	324.8	344.3	2016.0	3897.6	341.7	363.3	2072.4	46
48	3806.6	325.4	344.9	2017.9	3900.7	342.2	363.9	2074.2	48
50	3809.7	325.9	345.6	2019.7	3903.8	342.8	364.5	2076.1	50
52	3812.9	326.5	346.2	2021.6	3907.0	343.4	365.2	2078.0	52
54	3816.0	327.0	346.8	2023.5	3910.1	343.9	365.8	2079.9	54
56	3819.2	327.6	347.4	2025.4	3913.2	344.5	366.5	2081.8	56
58	3822.3	328.1	348.1	2027.2	3916.4	345.1	367.1	2083.7	58
60	3825.5	328.7	348.7	2029.1	3919.5	345.6	367.7	2085.5	60

Table A-5. Functions of 1° curves (continued)

Table A-5. Functions of 1° curves (continued)

	56°				57°				
	LC	M	E	T	LC	M	E	T	
0	5380.1	670.7	759.6	3046.6	5468.2	694.4	790.2	3111.1	0
2	5383.0	671.4	760.6	3048.8	5471.1	695.2	791.2	3113.3	2
4	5386.0	672.2	761.6	3050.9	5474.0	696.0	792.2	3115.4	4
6	5388.9	672.9	762.7	3053.1	5477.0	696.8	793.3	3117.6	6
8	5391.8	673.7	763.7	3055.2	5479.9	697.6	794.3	3119.7	8
10	5394.8	674.4	764.7	3057.4	5482.8	698.4	795.3	3121.9	10
12	5397.7	675.2	765.7	3059.5	5485.7	699.2	796.3	3124.1	12
14	5400.7	676.0	766.7	3061.6	5488.7	700.0	797.4	3126.2	14
16	5403.6	676.8	767.7	3063.8	5491.6	700.8	798.4	3128.4	16
18	5406.5	677.6	768.7	3065.9	5494.5	701.6	799.4	3130.6	18
20	5409.5	678.4	769.7	3068.1	5497.4	702.4	800.5	3132.7	20
22	5412.4	679.2	770.8	3070.2	5500.3	703.2	801.2	3134.9	22
24	5415.3	680.0	771.8	3072.4	5503.3	704.0	802.6	3137.0	24
26	5418.3	680.8	772.8	3074.5	5506.2	704.8	803.6	3139.2	26
28	5421.2	681.6	773.8	3076.6	5509.1	705.6	804.7	3141.4	28
30	5424.1	682.4	774.8	3078.8	5512.0	706.4	805.7	3143.5	30
32	5427.1	683.2	775.8	3080.9	5515.0	707.2	806.8	3145.7	32
34	5430.0	684.0	776.8	3083.1	5517.9	708.0	807.8	3147.9	34
36	5433.0	684.8	777.8	3085.2	5520.8	708.8	808.8	3150.0	36
38	5435.9	685.6	778.9	3087.4	5523.7	709.6	809.9	3162.2	38
40	5438.8	686.4	779.9	3089.6	5626.7	710.4	810.9	3154.4	40
42	5441.8	687.2	780.9	3091.7	5529.6	711.2	812.0	3166.6	42
44	5444.7	688.0	781.9	3093.9	5532.6	712.0	813.0	3158.7	44
46	5447.6	688.8	783.0	3096.0	5535.4	712.8	814.1	3160.9	46
48	5450.6	689.6	784.0	3098.2	5538.2	713.6	815.1	3163.1	48
50	5453.6	690.4	785.0	3100.3	5541.3	714.4	816.2	3165.3	60
52	5456.6	691.2	786.0	3102.5	5544.2	715.2	817.2	3167.4	52
54	5459.4	692.0	787.1	3104.6	5547.1	716.0	818.3	3169.6	54
56	5462.3	692.8	788.1	3108.8	5560.0	716.8	819.3	3171.8	56
58	5465.3	693.6	789.1	3108.9	5553.0	717.6	820.4	3174.0	58
60	5468.2	694.4	790.2	3111.1	5555.9	718.4	821.4	3176.1	60
		68°			59°				
	LC	M	E	T	LC	M	E	T	
0	5565.9	718.4	821.4	3176.1	5643.1	742.8	853.5	3241.9	0
2	5568.8	719.2	822.6	3178.3	5646.0	743.6	864.6	3244.1	2
4	5561.7	720.0	823.6	3180.5	5648.9	744.4	865.7	3246.3	4
6	5564.6	720.8	824.6	3182.7	5651.8	745.3	866.8	3248.5	6
8	5567.5	721.6	825.7	3184.9	5654.7	746.1	867.9	3250.7	8
10	5570.4	722.4	826.7	3187.1	5657.6	746.9	859.0	3252.9	10
12	5673.3	723.2	827.8	3189.2	5660.5	747.7	860.0	3255.1	12
14	5676.2	724.0	828.9	3191.4	5663.4	748.6	861.1	3257.3	14
16	5579.2	724.8	829.9	3193.6	5666.3	749.4	862.2	3259.5	16
18	5582.1	725.6	831.0	3195.8	5669.2	750.2	863.3	3261.7	18
20	5585.0	726.5	832.1	3198.0	5672.1	751.1	864.4	3263.9	20
22	5587.9	727.3	833.1	3200.2	5675.0	751.9	865.5	3266.1	22
24	5590.8	728.1	834.2	3202.4	5677.9	752.7	866.6	3268.3	24
26	5593.7	728.9	835.3	3204.5	5680.8	753.5	867.7	3270.5	26
28	5596.6	729.7	836.3	3206.7	5683.7	754.4	868.8	3272.7	28
30	5599.5	730.5	837.4	3208.9	5686.5	755.2	869.9	3274.9	30
32	5602.4	731.3	838.4	3211.1	5689.4	756.0	871.0	3277.1	32
34	5605.3	732.1	839.5	3213.3	5692.3	756.9	872.1	3279.4	34
36	5608.2	732.9	840.6	3215.5	5695.2	757.7	873.2	3281.6	36
38	5611.1	733.7	841.6	3217.7	5698.1	758.5	874.3	3283.8	38
40	5614.0	734.6	842.7	3219.9	5701.0	759.4	875.4	3286.0	40
42	5616.9	735.4	843.8	3222.1	5703.9	760.2	876.5	3288.2	42
44	5619.8	736.2	844.9	3224.3	5706.8	761.0	877.6	3290.5	44
46	5622.8	737.0	846.0	3226.5	5709.7	761.9	878.7	3292.7	46
48	5625.7	737.8	847.0	3228.7	5712.6	762.7	879.8	3294.9	48
50	5628.6	738.6	848.1	3230.9	5715.5	763.5	880.9	3297.1	50
52	5631.5	739.4	849.2	3233.1	5718.4	764.4	882.0	3299.3	52
54	5634.4	740.2	850.3	3235.3	5721.3	765.2	883.1	3301.5	54
56	5637.3	741.0	851.4	3237.5	5724.2	766.0	884.2	3303.8	56
58	5640.2	741.9	852.5	3239.7	5727.1	766.8	885.3	3306.0	58
60	5643.1	742.8	853.5	3241.9	5730.0	767.7	886.4	3308.2	60

Table A-5. Functions of 1° curves (continued)

	60°				61°				
	LC	M	E	T	LC	M	E	T	
0	5730.0	767.7	886.4	3308.2	5816.4	792.9	920.2	3375.2.	0
2	5732.9	768.5	887.5	3310.4	5819.3	793.7	921.4	3377.4	2
4	5735.8	769.4	888.7	3312.7	5822.1	794.6	922.5	3379.7	4
6	5738.6	770.2	889.8	3314.9	5825.0	795.4	923.6	3381.9	6
8	5741.5	771.1	890.9	3317.1	5827.9	796.3	924.8	3384.2	8
10	5744.4	771.9	892.0	3319.3	5830.7	797.1	925.9	3386.4	10
12	5747.3	772.7	893.1	3321.6	5833.6	798.0	927.1	3388.7	12
14	5750.2	773.6	894.3	3323.8	5836.5	798.8	928.2	3390.9	14
16	5753.0	774.4	895.4	3326.0	5839.3	799.7	929.3	3393.2	16
18	5755.9	775.3	896.5	3328.3	5842.2	800.5	930.5	3395.4	18
20	5758.8	776.1	897.6	3330.5	5845.1	801.4	931.6	3397.7	20
22	5761.7	776.9	898.8	3332.7	5847.9	802.2	932.8	3399.9	22
24	5764.6	777.8	899.9	3334.9	5850.8	803.1	933.9	3402.2	24
26	5767.4	778.6	901.0	3337.2	5853.7	803.9	935.1	3404.4	26
28	5770.3	779.5	902.1	3339.4	5856.5	804.8	936.3	3406.7	28
30	5773.2	780.3	903.2	3341.6	5859.4	805.6	937.4	3408.9	30
32	5776.1	781.1	904.4	3343.9	5862.3	806.5	938.6	3411.2	32
34	5779.0	782.0	905.5	3346.1	5865.1	807.3	939.7	3413.5	34
36	5781.8	782.8	906.6	3348.3	5868.0	808.2	940.9	3415.7	36
38	5784.7	783.7	907.7	3350.6	5870.9	809.0	942.1	3418.0	38
40	5787.6	784.5	908.8	3352.8	5873.7	809.9	943.2	3420.3	40
42	5790.5	785.3	910.0	3355.0	5876.6	810.7	944.4	3422.5	42
44	5793.4	786.2	911.1	3357.3	5879.5	811.6	945.5	3424.8	44
46	5796.6	787.0	918.8	3359.5	5882.3	812.4	946.7	3427.1	46
48	5799.1	787.9	913.4	3361.8	5885.2	813.3	947.8	3429.3	48
50	5802.0	788.7	914.5	3364.0	5888.1	814.1	949.0	3431.6	50
52	5804.9	789.5	915.7	3366.2	5890.9	815.0	950.2	3433.9	52
54	5807.8	790.4	916.8	3368.5	5893.8	815.8	951.3	3436.1	54
56	5810.6	791.2	918.0	3370.7	5896.7	816.7	952.5	3438.4	56
58	5813.5	792.1	919.1	3373.0	5899.5	817.5	953.6	3440.7	58
60	5816.4	792.9	920.2	3375.2	5902.4	818.4	954.8	3442.9	60
	62°				63°				
	LC	M	E	T	LC	M	E	1	
0	5902.4	818.4	954.8	3442.9	5987.8	844.4	990.3	3511.3	0
2	5905.2	819.3	956.0	3445.2	5990.6	845.3	991.5	3513.6	2
4	5908.1	820.1	957.2	3447.5	5993.5	846.2	992.7	3515.9	4
6	5910.9	821.0	958.3	3449.7	5996.3	847.1	993.9	3518.2	
8	5913.8	821.8	959.5	3452.0	5999.1	847.9	995.1	3520.5	8
10	5916.6	822.7	960.7	3454.3	6002.0	848.8	996.3	3522.8	10
12	5919.5	823.6	961.9	3456.6	6004.8	849.7	997.5	3525.1	12
14	5922.3	824.4	963.0	3458.8	6007.7	850.6	988.7	3527.4	14
16	5925.2	825.3	964.2	3461.1	6010.5	851.4	999.9	3529.7	16
18	5928.0	826.1	965.4	3463.4	6013.3	852.3	1001.1	3532.0	18
20	5930.9	827.0	966.6	3465.7	6016.2	853.2	1002.3	3534.3	20
22	5933.7	827.9	967.8	3467.9	6019.0	854.1	1003.5	3536.6	22
24	5936.6	828.7	968.9	3470.2	6021.8	854.9	1004.7	3538.9	24
26	5939.4	829.6	970.1	3472.5	6024.7	855.8	1005.9	3541.2	26
28	5942.3	830.4	971.3	3474.7	6027.5	856.7	1007.1	3543.5	28
30	5945.1	831.3	972.5	3477.0	6030.3	857.6	1008.4	3545.8	30
32	5847.9	832.2	973.6	3479.3	6033.2	858.4	1009.6	3548.1	32
34	5950.8	833.0	974.8	3481.6	6036.0	859.3	1010.8	3550.4	34
36	5953.6	833.9	976.0	3483.9	6038.9	860.2	1012.0	3552.7	36
38	5956.5	834.7	977.2	3486.2	6041.7	861.1	1013.2	3555.0	38
40	5959.3	835.6	978.4	3488.5	6044.5	861.9	1014.5	3557.3	40
42	5962.2	836.5	979.6	3490.7	6047.4	862.8	1015.7	3559.0	42
44	5965.0	837.4	980.8	3493.0	6050.2	863.7	1016.9	3562.0	44
46	5967.9	838.3	982.0	3495.3	6053.0	864.6	1018.1	3564.3	46
48	5970.7	839.1	983.2	3497.6	6055.9	865.4	1019.3	3566.6	48
50	5973.6	840.0	984.4	3499.9	6058.7	866.3	1020.6	3568.9	50
52	5976.4	840.9	985.5	3502.2	6061.6	867.2	1021.8	3571.2	52
54	5979.3	841.7	986.7	3504.5	6064.4	868.1	1023.0	3573.5	54
56	5982.1	842.6	987.9	3506.8	6067.2	868.9	1024.2	3575.8	56
58	5985.0	843.5	989.1	3509.0	6070.1	869.8	1025.4	3578.1	58
60	5987.8	844.4	990.3	3511.3	6072.9	870.7	1026.7	3580.4	60

Table A-5. Functions of 1° curves (continued)

	64°				65°				
	LC	M	E	T	LC	M	E	T	
0	6072.9	870.7	1026.7	3580.4	6157.5	897.3	1064.0	3650.4	0
2	6075.7	871.5	1027.9	3582.8	6160.3	898.2	1065.2	3652.8	2
4	6078.5	872.4	1029.2	3585.1	6163.1	899.1	1066.5	3655.1	4
6	6081.4	873.3	1030.4	3587.4	6165.9	900.0	1067.7	3657.5	6
8	6084.2	874.2	1031.7	3589.7	6168.7	900.9	1069.0	3659.8	8
10	6087.0	875.1	1032.9	3592.1	6171.5	901.8	1070.2	3662.2	10
12	6089.8	875.9	1034.1	3594.4	6174.3	902.7	1071.5	3664.5	12
14	6092.6	876.8	1035.4	3596.7	6177.1	903.6	1072.7	3666.9	14
16	6095.5	877.7	1036.6	3599.1	6179.9	904.5	1074.0	3669.2	16
18	6098.3	878.6	1037.9	3601.4	6182.7	905.4	1075.2	3671.6	18
20	6101.1	879.5	1039.1	3603.7	6185.5	906.3	1076.6	3673.9	20
22	6103.9	880.3	1040.3	3606.0	6188.3	907.2	1077.8	3676.2	22
24	6106.7	881.2	1041.6	3608.4	6191.1	908.1	1079.1	3678.6	24
26	6109.6	882.1	1042.8	3610.7	6193.9	909.0	1080.4	3680.9	26
28	6112.4	883.0	1044.1	3613.0	6196.7	909.9	1081.7	3683.3	28
30	6115.2	883.9	1045.3	3615.3	6199.5	910.8	1083.0	3685.6	30
32	6118.0	884.7	1046.5	3617.7	6202.3	911.7	1084.2	3688.0	32
34	6120.8	885.6	1047.8	3620.0	6205.1	912.6	1085.5	3690.4	34
36	6123.7	886.5	1049.0	3622.3	6208.0	913.5	1086.8	3692.7	36
38	6126.5	887.4	1050.3	3624.7	6210.8	914.4	1088.1	3695.1	38
40	6129.3	888.3	1051.5	3627.0	6213.6	915.3	1089.4	3697.4	40
42	6132.1	889.2	1052.7	3629.4	6216.4	916.2	1090.6	3699.8	42
44	6134.9	890.1	1054.0	3631.7	6219.2	917.1	1091.9	3702.2	44
46	6137.8	891.0	1055.2	3634.0	6222.0	918.0	1093.2	3704.5	46
48	6140.6	891.9	1056.5	3636.4	6224.8	918.9	1094.5	3706.9	48
50	6143.4	892.8	1057.7	3638.7	6227.6	919.8	1095.8	3709.3	50
52	6146.2	893.7	1059.0	3641.1	6230.4	920.7	1097.0	3711.6	52
54	6149.0	894.6	1060.2	3643.4	6233.2	921.6	1098.3	3714.0	54
56	6151.9	895.5	1061.5	3645.7	6236.0	922.5	1099.6	3716.3	56
60	6154.7	896.4	1062.7	3648.1	6238.8	923.4	1100.9	3718.7	58
	6157.5	897.3	1064.0	3650.4	6241.6	924.3	1102.2	3721.1	60
	66°				67°				
	LC	M	E	T	LC	M	E	T	
0	6241.6	924.3	1102.2	3721.1	6325.2	951.8	1141.5	3792.6	0
2	6244.4	925.2	1103.5	3723.4	6328.0	952.7	1142.8	3795.0	2
4	6247.2	926.1	1104.8	3725.8	6330.7	953.6	1144.1	3797.4	4
6	6250.0	927.0	1106.1	3728.2	6333.5	954.5	1145.4	3799.8	6
8	6252.7	927.9	1107.4	3730.6	6336.3	955.5	1146.7	3802.2	8
10	6255.5	928.8	1108.7	3732.9	6339.0	956.4	1148.1	3804.6	10
12	6258.3	929.8	1110.0	3735.3	6341.8	957.3	1149.4	3807.0	12
14	6261.1	930.7	1111.3	3737.7	6344.6	958.2	1150.7	3809.4	14
16	6263.9	931.6	1112.6	3740.1	6347.4	959.2	1152.0	3811.8	16
18	6266.7	932.5	1113.9	3742.4	6350.1	960.1	1153.3	3814.2	18
20	6269.5	933.4	1115.2	3744.8	6352.9	961.0	1154.7	3816.6	20
22	6272.3	934.3	1116.5	3747.2	6355.7	961.9	1156.0	3819.0	22
24	6275.0	935.3	1117.8	3749.6	6358.4	962.9	1157.4	3821.4	24
26	6277.8	936.2	1119.1	3751.9	6361.2	963.8	1158.7	3823.8	26
28	6280.6	937.1	1120.4	3754.3	6364.0	964.7	1160.1	3826.2	28
30	6283.4	938.0	1121.7	3756.7	6366.7	965.6	1161.4	3828.6	30
32	6286.2	938.9	1123.0	3759.1	6369.5	966.6	1162.8	3831.0	32
34	6289.0	939.8	1124.3	3761.5	6372.3	967.5	1164.1	3833.4	34
36	6291.8	940.8	1125.6	3763.9	6375.1	968.4	1165.5	3835.9	36
38	6294.5	941.7	1126.9	3766.3	6377.8	969.3	1166.8	3838.3	38
40	6297.3	942.6	1128.3	3768.7	6380.6	970.3	1168.2	3840.7	40
42	6300.1	943.5	1129.6	3771.0	6388.4	971.2	1169.5	3843.1	42
44	6302.9	944.4	1130.9	3773.4	6386.1	972.1	1170.9	3845.5	44
46	6305.7	945.3	1132.2	3775.8	6388.9	973.0	1172.2	3847.9	46
48	6308.5	946.3	1133.5	3778.2	6391.7	974.0	1173.6	3850.4	48
50	6311.3	947.2	1134.9	3780.6	6394.4	974.9	1174.9	3852.8	50
52	6314.1	948.1	1136.2	3783.0	6397.2	975.8	1176.3	3855.2	52
54	6316.8	949.0	1137.5	3785.4	6400.0	976.8	1177.6	3857.6	54
56	6319.6	949.9	1138.8	3787.8	6402.8	977.7	1179.0	3860.0	56
58	6322.4	950.8	1140.1	3790.2	6405.5	978.6	1180.3	3862.5	58
60	6325.2	951.8	1141.5	3792.6	6408.3	979.6	1181.6	3864.9	60

Table A-5. Functions of 1° curves (continued)
68°
69°

	LC	M	E	T	LC	M	E	T	
0	6408.3	979.6	1181.6	3864.9	6491.1	1007.7	1222.9	3938.1	0
2	6411.1	980.5	1183.0	3867.3	6493.8	1008.7	1224.3	3940.6	2
4	6413.8	981.4	1184.4	3869.7	6496.6	1009.6	1225.7	3943.0	4
6	6416.6	982.4	1185.7	3872.2	6499.3	1010.6	1227.1	3945.5	6
8	6419.3	983.3	1187.1	3874.6	6502.1	1011.5	1228.5	3947.9	8
10	6422.1	984.2	1188.5	3877.0	6504.8	1012.5	1229.0	3950.4	10
12	6424.9	985.2	1189.8	3879.5	6507.5	1013.4	1231.2	3952.9	12
14	6427.6	986.1	1191.2	3881.9	6510.3	1014.4	1232.7	3955.3	14
16	6430.4	987.0	1192.6	3884.3	6513.0	1015.3	1234.1	3957.8	16
18	6433.1	988.0	1193.9	3886.8	6515.8	1016.3	1235.5	3960.2	18
20	6435.9	988.9	1195.3	3889.2	6518.5	1017.2	1236.9	3962.7	20
22	6438.7	989.8	1196.7	3891.6	6521.2	1018.2	1238.3	3965.2	22
24	6441.4	990.8	1198.0	3894.1	6524.0	1019.1	1239.7	3967.6	24
26	6444.2	991.7	1199.4	3896.5	6526.7	1020.1	1241.1	3970.1	26
28	6446.9	992.6	1200.8	3898.9	6529.5	1021.0	1242.5	3972.5	28
30	6449.7	993.6	1202.1	3901.4	6532.2	1022.0	1243.9	3975.0	30
32	6452.5	994.5	1203.5	3903.8	6534.9	1022.9	1245.3	3977.5	32
34	6455.2	995.4	1204.9	3906.3	6537.7	1023.9	1246.7	3980.0	34
36	6458.0	996.4	1206.2	3908.7	6540.4	1024.8	1248.1	3982.4	36
38	6460.7	997.3	1207.6	3911.2	6543.2	1025.8	1249.5	3984.9	38
40	6463.7	998.2	1209.0	3913.6	6545.9	1026.7	1250.9	3987.4	40
42	6466.3	999.2	1210.3	3916.1	6548.6	1027.7	1252.3	3989.9	42
44	6469.0	1000.1	1211.7	3918.5	6551.4	1028.6	1253.7	3992.3	44
46	6471.8	1001.0	1213.1	3921.0	6554.1	1029.6	1255.1	3994.8	46
48	6474.5	1002.0	1214.5	3923.4	6556.9	1030.9	1256.5	3997.3	48
50	6477.3	1002.9	1215.9	3925.9	6559.6	1031.5	1257.9	3999.8	50
52	6480.1	1003.8	1217.3	3928.3	6562.3	1032.4	1259.3	4002.2	52
54	6482.8	1004.8	1218.7	3930.8	6565.1	1033.4	1260.7	4004.7	54
56	6485.6	1005.7	1220.1	3933.2	6567.8	1034.3	1262.1	4007.2	56
58	6488.3	1006.7	1221.5	3935.7	6570.6	1035.3	1263.5	4009.7	58
60	6491.1	1007.7	1222.9	3938.1	6573.3	1036.3	1265.0	4012.1	60
	70°				71°				
	LC	M	E	T	LC	M	E	T	
0	6573.3	1036.3	1265.0	4012.1	6654.9	1065.1	1308.4	4087.1	0
2	6576.0	1037.3	1266.4	4014.6	6657.6	1066.1	1309.9	4089.7	2
4	6578.7	1038.2	1267.9	4017.1	6660.3	1067.0	1311.3	4092.2	4
6	6581.5	1039.2	1269.3	4019.6	6663.0	1068.0	1312.8	4094.7	6
8	6584.2	1040.1	1270.8	4022.1	6665.7	1068.9	1314.2	4097.2	8
10	6586.9	1041.1	1272.2	4024.6	6668.4	1069.9	1315.7	4099.8	10
12	6589.6	1042.1	1273.6	4027.1	6671.1	1070.9	1317.2	4102.3	12
14	6592.3	1043.0	1275.1	4029.6	6673.8	1071.9	1318.6	4104.8	14
16	6595.1	1044.0	1276.5	4032.1	6676.6	1072.9	1320.1	4107.3	16
18	6597.8	1044.9	1278.0	4034.6	6679.3	1073.8	1321.5	4109.8	18
20	6600.5	1045.9	1279.4	4037.1	6682.0	1074.8	1323.0	4112.4	20
22	6603.2	1046.9	1280.8	4039.6	6684.7	1075.8	1324.4	4114.9	22
24	6605.9	1047.8	1282.3	4042.1	6687.4	1076.8	1325.9	4117.4	24
26	6608.7	1048.8	1283.7	4044.6	6690.1	1077.7	1327.4	4119.9	26
28	6611.4	1049.7	1285.2	4047.1	6692.8	1078.7	1328.9	4122.4	28
30	6614.1	1050.7	1286.6	4049.6	6695.5	1079.7	1330.4	4125.0	30
32	6616.8	1051.7	1288.0	4052.1	6698.2	1080.7	1331.8	4127.5	32
34	6619.5	1052.6	1289.5	4054.6	6700.9	1081.6	1333.3	4130.1	34
36	6622.3	1053.6	1290.9	4057.1	6703.6	1082.6	1334.8	4132.6	36
38	6625.0	1054.5	1292.4	4059.6	6706.3	1083.6	1336.3	4135.1	38
40	6627.7	1055.5	1293.8	4062.1	6709.0	1084.5	1337.8	4137.7	40
42	6630.4	1056.5	1295.3	4064.6	6711.7	1085.5	1339.2	4140.2	42
44	6633.1	1057.4	1296.7	4067.1	6714.4	1086.5	1340.7	4142.7	44
46	6635.9	1058.4	1298.2	4069.6	6717.2	1087.5	1342.2	4145.3	46
48	6638.6	1059.3	1299.6	4072.1	6719.9	1088.4	1343.7	4147.8	48
50	6641.3	1060.3	1301.1	4074.6	6722.6	1089.4	1345.2	4150.4	50
52	6644.0	1061.3	1302.6	4077.1	6725.3	1090.4	1346.7	4152.9	52
54	6646.7	1062.2	1304.0	4079.6	6728.0	1091.3	1348.2	4155.4	54
56	6649.5	1063.2	1305.5	4082.1	6730.7	1092.3	1349.7	4158.0	56
58	6652.2	1064.1	1306.9	4084.6	6733.4	1093.3	1351.2	4160.5	58
60	6654.9	1065.1	1308.4	4087.1	6736.1	1094.3	1352.7	4163.1	60

Table A-5. Functions of 1° curves (continued)

	72°				73°				
	LC	M	E	T	LC	M	E	T	
0	6736.1	1094.3	1352.7	4163.1	6816.6	1123.9	1398.1	4240.0	0
2	6738.8	1095.2	1354.2	4165.6	6819.3	1124.8	1399.6	4242.6	2
4	6741.5	1096.2	1355.7	4168.2	6821.9	1125.8	1401.2	4245.1	4
6	6744.1	1097.2	1357.2	4170.7	6824.6	1126.8	1402.7	4247.7	6
8	6746.8	1098.2	1358.7	4173.3	6827.3	1127.8	1404.2	4250.3	8
10	6749.5	1099.2	1360.2	4175.8	6830.0	1128.8	1405.8	4252.9	10
12	6752.2	1100.1	1361.7	4178.4	6832.6	1129.8	1407.3	4255.5	12
14	67549	1191.1	1363.2	4181.0	6835.3	1130.8	1408.8	4258.1	14
16	6757.6	1102.1	1364.7	4183.5	6838.0	1131.8	1410.4	4260.7	16
18	6760.2	1103.1	1366.2	4186.1	6840.7	1132.8	1411.9	4263.2	18
20	6762.9	1104.1	1367.7	4188.6	6843.3	1133.8	1413.5	4265.8	20
22	6765.6	1105.1	1369.2	4191.2	6846.0	1134.8	1415.1	4268.4	22
24	6768.3	1106.0	1370.7	4193.7	6848.7	1135.8	1416.6	4271.0	24
26	6771.0	1107.0	1372.2	4196.3	6851.3	1136.8	1418.2	4273.6	26
28	6773.7	1108.0	1373.7	4198.8	6854.0	1137.8	1419.7	4276.2	28
30	6776.3	1109.0	1375.2	4201.4	6856.7	1138.8	1421.3	4278.8	30
32	6779.0	1109.9	1376.7	4204.0	6859.4	1139.8	1422.9	4281.4	32
34	6781.7	1110.9	1378.2	4206.5	6862.0	1140.8	1424.4	4284.0	34
36	6784.4	1111.9	1379.7	4209.1	6864.7	1141.8	1426.0	4286.6	36
38	6787.1	1112.9	1381.2	4211.7	6867.4	1142.8	1427.5	4289.2	38
40	6789.8	1113.9	1382.8	4214.3	6870.1	1143.8	1429.1	4291.8	40
42	6792.4	1114.9	1384.3	4216.8	6872.7	1144.8	1430.7	4294.4	42
44	6795.1	1115.9	1385.8	4219.4	6875.4	1145.8	1432.2	4297.0	44
46	6797.8	1116.9	1387.4	4222.0	6878.1	1146.8	1433.8	4299.6	46
48	6800.5	1117.9	1388.9	4224.5	6880.8	1147.8	1435.3	4302.2	48
50	6803.2	1118.9	1390.4	4227.1	6883.4	1148.8	1436.9	4304.8	50
52	6805.9	1119.9	1392.0	4229.7	6886.1	1149.8	1438.5	4307.4	52
54	6808.5	1120.9	1393.5	4232.3	6888.8	1150.8	1440.0	4310.0	54
56	6811.2	1121.9	1395.0	4234.8	6891.4	1151.8	1441.6	4312.6	56
58	6813.9	1122.9	1396.6	4237.4	6894.1	1152.8	1443.1	4315.2	58
60	6816.6	1123.9	1398.1	4240.0	6896.8	1153.8	1444.7	4317.8	60
	74°				75°				
	LC	M	E	T	LC	M	E	T	
0	6896.8	1153.8	1444.7	4317.8	6976.4	1184.1	1492.5	4396.7	0
2	6899.4	1154.8	1446.2	4320.5	6979.0	1185.1	1494.1	4399.4	2
4	6902.1	1155.8	1447.8	4323.1	6981.7	1186.1	1495.7	4402.1	4
6	6904.8	1156.8	1449.4	4325.7	6984.3	1187.1	1497.3	4404.7	6
8	6907.4	1157.8	1451.0	4328.3	6986.9	1188.1	1499.0	4407.4	8
10	6910.1	1158.8	1452.6	4330.9	6989.6	1189.2	1500.6	4410.0	10
12	6912.7	1159.8	1454.1	4333.6	6992.2	1190.2	1502.2	4412.7	12
14	6915.4	1160.8	1455.7	4336.2	6994.9	1191.2	1503.8	4415.3	14
16	6918.0	1161.8	1457.3	4338.8	6997.5	1192.2	1505.4	4418.0	16
18	6920.7	1162.8	1458.9	4341.4	7000.1	1193.2	1507.0	4420.7	18
20	6923.3	1163.9	1460.5	4344.0	7002.8	1194.3	1508.7	4423.3	20
22	6926.0	1164.9	1462.0	4346.7	7005.4	1195.3	1510.3	4426.0	22
24	6928.6	1165.9	1463.6	4349.3	7008.0	1196.3	1512.0	4428.6	24
26	6931.3	1166.9	1465.2	4351.9	7010.7	1197.3	1513.6	4431.3	26
28	6933.9	1167.9	1466.8	4354.5	7013.3	1198.3	1515.3	4434.0	28
30	6936.6	1168.9	1468.4	4357.1	7015.9	1199.4	1516.9	4436.6	30
32	6939.2	1169.9	1469.9	4359.8	7018.6	1200.4	1518.5	4439.3	32
34	6941.9	1170.9	1471.5	4362.4	7021.2	1201.4	1520.2	4442.0	34
36	6944.6	1171.9	1473.1	4365.1	7023.9	1202.4	1521.8	4444.6	36
38	6947.2	1172.9	1474.7	4367.7	7026.5	1203.4	1523.5	4447.3	38
40	6949.9	1174.0	1476.4	4370.3	7029.1	1204.5	1525.1	4450.0	40
42	6952.5	1175.0	1478.0	4373.0	7031.8	1205.5	1526.7	4452.7	42
44	6955.2	1176.0	1479.6	4375.6	7034.4	1206.5	1528.4	4455.3	44
46	6957.8	1177.0	1481.2	4378.3	7037.0	1207.5	1530.0	4458.0	46
48	6960.5	1178.0	1482.8	4380.9	7039.7	1208.5	1531.7	4460.7	48
50	6963.1	1179.0	1484.4	4383.5	7042.3	1209.6	1533.3	4463.4	50
52	6965.8	1180.0	1486.0	4386.2	7045.0	1210.6	1534.9	4466.0	52
54	6968.4	1181.0	1487.7	4388.8	7047.6	1211.6	1536.6	4468.7	54
56	6971.1	1182.0	1489.3	4391.5	7050.2	1212.6	1538.2	4471.4	56
58	6973.7	1183.0	1490.9	4394.1	7052.9	1213.6	1539.9	4474.1	58
60	6976.4	1184.1	1492.5	4396.7	7055.5	1214.7	1541.5	4476.7	60

A-83

Table A-5. Functions of 1° curves (continued)

A-84

Table A-5. Functions of 1° curves (continued)

A-85

Table A-5. Functions of 1° curves (continued)

	84°				85°				
	LC	M	E	T	LC	M	E	T	
0	7668.3	1471.8	1980.5	5159.3	7742.4	1505.4	2041.8	5250.6	0
2	7670.8	1472.9	1982.5	5162.3	7744.8	1506.5	2043.9	5253.6	2
4	7673.2	1474.0	1984.5	5165.3	7747.3	1507.6	2046.0	5256.7	4
6	7675.7	1475.1	1986.6	5168.4	7749.7	1508.8	2048.0	5259.8	6
8	7678.2	1476.2	1988.6	5171.4	7752.2	1509.9	2050.1	5262.9	8
10	7680.6	1477.4	1990.6	5174.4	7754.6	1511.0	2052.2	5266.0	10
12	7683.1	1478.5	1992.7	5177.5	7757.1	1512.2	2054.2	5269.0	12
14	7685.6	1479.6	1994.7	5180.7	7759.5	1513.3	2056.3	5272.1	14
16	7688.1	1480.7	1996.7	5183.5	7762.0	1514.4	2058.4	5275.4	16
18	7690.5	1481.8	1998.8	5186.6	7764.4	1515.6	2060.5	5278.3	18
20	7693.0	1483.0	2000.8	5189.6	7766.9	1516.7	2062.6	5281.4	20
22	7695.5	1484.1	2002.8	5192.6	7769.3	1517.8	2064.7	5284.4	22
24	7697.9	1485.2	2004.9	5195.6	7771.8	1519.0	2066.8	5287.5	24
26	7700.4	1486.3	2006.9	5198.7	7774.2	1520.1	2068.9	5290.6	26
28	7702.9	1487.4	2008.9	5201.7	7776.7	1521.2	2071.0	5293.7	28
30	7705.3	1488.6	2011.0	5204.7	7779.1	1522.4	2073.1	5296.7	30
32	7707.8	1489.7	2013.0	5207.8	7781.5	1523.5	2075.2	5299.8	32
34	7710.3	1490.8	2015.0	5210.8	7784.0	1524.6	2077.3	5302.9	34
36	7712.8	1491.9	2017.0	5213.9	7786.4	1525.8	2079.4	5306.1	36
38	7715.2	1493.0	2019.1	5216.9	7788.9	1526.9	2081.5	5309.2	38
40	7717.7	1494.2	2021.2	5220.0	7791.3	1528.0	2083.7	5312.3	40
42	7720.2	1495.3	2023.2	5223.1	7793.8	1529.2	2085.8	5315.4	42
44	7722.6	1496.4	2025.3	5226.1	7796.2	1530.3	2087.9	5318.5	44
46	7725.1	1497.5	2027.4	5229.2	7798.7	1531.4	2090.0	5321.6	46
48	7727.6	1498.6	2029.4	5232.2	7801.1	1532.6	2092.1	5324.7	48
50	7730.0	1499.8	2031.5	5235.5	7803.6	1533.7	2094.2	5327.8	50
52	7732.5	1500.9	2033.6	5238.3	7806.0	1534.8	2096.3	5330.9	52
54	7735.0	1502.0	2035.6	5241.4	7808.5	1536.0	2098.4	5334.0	54
56	7737.5	1503.1	2037.7	5244.5	7810.9	1537.1	2100.6	5337.1	56
58	7739.9	1504.2	2039.8	5247.5	7813.4	1538.2	2102.7	5340.2	58
60	7742.4	1505.4	2041.8	5250.6	7815.8	1539.3	2104.8	5343.3	60
	86°				87°				
	LC	M	E	T	LC	M	E	T	
0	7815.8	1539.3	2104.8	5343.3	7888.5	1573.6	2169.5	5437.5	0
2	7818.2	1540.4	2106.9	5346.4	7890.9	1574.8	2171.6	5440.7	2
4	7820.6	1541.6	2109.1	5349.5	7893.3	1575.9	2173.8	5443.9	4
6	7823.1	1542.7	2111.2	5352.7	7895.7	1577.1	2176.0	5447.1	6
8	7825.5	1543.9	2113.4	5355.8	7898.1	1578.2	2178.2	5450.3	8
10	7827.9	1545.0	2115.5	5358.9	7900.5	1579.4	2180.4	5453.4	10
12	7830.3	1546.1	2117.6	5362.0	7903.0	1580.5	2182.5	5456.6	12
14	7832.8	1547.3	2119.8	5365.2	7905.4	1581.7	2184.7	5459.8	14
16	7835.2	1548.4	2121.9	5368.3	7907.8	1582.9	2186.9	5463.0	16
18	7837.6	1549.6	2124.1	5371.4	7910.2	1584.0	2189.1	5466.2	18
20	7840.0	1550.7	2126.2	5374.6	7912.6	1585.1	2191.3	5469.4	20
22	7842.4	1551.8	2128.3	5377.7	7915.0	1586.3	2193.5	5472.5	22
24	7844.9	1553.0	2130.5	5380.8	7917.4	1587.4	2195.7	5475.7	24
26	7847.3	1554.1	2132.6	5383.9	7919.8	1588.6	2197.9	5478.9	26
28	7849.7	1555.3	2134.8	5387.1	7922.2	1589.7	2200.1	5482.1	28
30	7852.1	1556.4	2136.9	5390.2	7924.6	1590.9	2202.3	5485.3	30
32	7854.6	1557.5	2139.0	5393.4	7927.1	1592.0	2204.5	5488.5	32
34	7857.0	1558.7	2141.2	5396.5	7929.5	1593.2	2206.8	5491.7	34
36	7859.4	1559.8	2143.3	5399.7	7931.9	1594.3	2209.0	5494.9	36
38	7861.8	1561.0	2145.5	5402.8	7934.3	1595.5	2211.2	5498.1	38
40	7864.3	1562.1	2147.7	5406.0	7936.7	1596.6	2213.4	5501.3	40
42	7866.7	1563.2	2149.8	5409.1	7939.1	1597.8	2215.6	5504.5	42
44	7869.1	1564.4	2152.0	5412.3	7941.5	1598.9	2217.8	5507.7	44
46	7871.5	1565.5	2154.2	5415.4	7943.9	1600.1	2220.0	5510.9	46
48	7874.0	1566.7	2156.4	5418.6	7946.3	1601.2	2222.3	5514.1	48
50	7876.4	1567.8	2158.6	5421.8	7948.7	1602.4	2224.5	5517.3	50
52	7878.8	1568.9	2160.7	5424.9	7951.2	1603.5	2226.7	5520.5	52
54	7881.2	1570.1	2162.9	5428.1	7953.6	1604.7	2228.9	5523.7	54
56	7883.6	1571.2	2165.1	5431.2	7956.0	1605.8	2231.1	5526.9	56
58	7886.1	1572.4	2167.3	5434.4	7958.4	1607.0	2233.3	5530.1	58
60	7888.5	1573.6	2169.5	5437.5	7960.8	1608.2	2235.6	5533.3	60

A-86

Table A-5. Functions of 1° curves (continued)

	LC	M	E	T	LC	M	E	T	
0	7960.8	1608.2	2235.6	5533.3	8032.4	1643.0	2303.6	5630.8	0
2	7963.2	1609.4	2237.8	5536.6	8034.8	1644.1	2305.9	5634.1	2
4	7965.6	1610.5	2240.1	5539.8	8037.1	1645.3	2308.2	5637.4	4
6	7968.0	1611.7	2242.3	5543.1	8039.5	1646.5	2310.5	5640.7	6
8	7970.3	1612.8	2244.6	5546.3	8041.9	1647.7	2312.8	5644.0	8
10	7972.7	1614.0	2246.8	5549.5	8044.2	1648.9	2315.1	5647.3	10
12	7975.1	1615.2	2249.1	5552.8	8046.6	1650.0	2317.4	5650.6	12
14	7977.5	1616.3	2251.3	5556.0	8049.0	1651.2	2319.7	5653.9	14
16	7979.9	1617.5	2253.6	5559.2	8051.4	1652.4	2322.0	5657.1	16
18	7982.3	1618.6	2255.8	5562.5	8053.7	1653.6	2324.3	5660.4	18
20	7984.7	1619.8	2258.1	5565.7	8056.1	1654.8	2326.7	5663.7	20
22	7987.1	1621.0	2260.4	5568.9	8058.5	1655.9	2329.0	5667.0	22
24	7989.4	1622.1	2262.7	5572.2	8060.8	1657.1	2331.3	5670.3	24
26	7991.8	1623.3	2264.9	5575.4	8063.2	1658.3	2333.7	5673.6	26
28	7994.2	1624.4	2267.2	5578.6	8065.6	1659.5	2336.0	5676.9	28
30	7996.6	1625.6	2269.5	5581.9	8067.9	1660.7	2338.3	5680.2	30
32	7999.0	1626.8	2271.7	5585.1	8070.3	1661.8	2340.7	5683.5	32
34	8001.4	1627.9	2273.9	5588.4	8073.7	1663.0	2343.0	5686.8	34
36	8003.8	1629.1	2276.2	5591.7	8075.1	1664.2	2345.3	5690.2	36
38	8006.1	1630.2	2278.5	5594.9	8077.4	1665.4	2347.7	5693.5	38
40	8008.5	1631.4	2280.8	5598.2	8079.8	1666.6	2350.0	5696.8	40
42	8010.9	1632.6	2283.0	5601.4	8082.2	1667.7	2352.3	5700.1	42
44	8013.3	1633.7	2285.3	5604.7	8084.5	1668.8	2354.7	5703.4	44
46	8015.7	1634.9	2287.6	5608.0	8086.9	1670.0	2357.0	5706.8	46
48	8018.1	1636.0	2289.9	5611.2	8089.3	1671.2	2359.3	5710.1	48
50	8020.5	1637.2	2292.2	5614.5	8091.6	1672.4	2361.7	5713.4	50
52	8022.9	1638.4	2294.4	5617.8	8094.0	1673.5	2364.0	5716.7	52
54	8025.2	1639.5	2296.7	5621.0	8096.4	1674.7	2366.3	5720.0	54
56	8027.6	1640.7	2299.0	5624.3	8098.8	1675.9	2368.7	5723.4	56
$\begin{aligned} & 58 \\ & 60 \end{aligned}$	8030.0	1641.8	2301.3	5627.5	8101.1	1677.1	2371.0	5726.7	58
	8032.4	1643.0	2303.6	5630.8	8103.5	1678.3	2373.4	5730.0	60
	90°				91°				
	LC	M	E	T	LC	M	E	T	
0	8103.5	1678.3	2373.4	5730.0	8173.9	1713.8	2445.1	5830.9	0
2	8105.8	1679.5	2375.8	5733.3	8176.2	1715.0	2447.5	5834.3	2
4	8108.2	1680.6	2378.2	5736.7	8178.5	1716.2	2450.0	5837.7	4
6	8110.5	1681.8	2380.5	5740.0	8180.9	1717.4	2452.4	5841.1	6
8	8112.9	1683.0	2382.9	5743.4	8183.2	1718.6	2454.8	5844.5	8
10	8115.2	1684.2	2385.3	5746.7	8185.5	1719.7	2457.2	5847.9	10
12	8117.6	1685.4	2387.6	5750.0	8187.9	1720.9	2459.7	5851.3	12
14	8119.9	1686.5	2390.0	5753.4	8190.2	1722.1	2462.1	5854.7	14
16	8122.3	1687.7	2392.4	5756.7	8192.5	1723.3	2464.5	5858.1	16
18	8124.6	1688.9	2394.7	5760.1	8194.8	1724.5	2467.0	5861.5	18
20	8127.0	1690.1	2397.1	5763.4	8197.2	1725.7	2469.4	4864.9	20
22	8129.3	1691.3	2399.5	5766.8	8199.5	1726.9	2471.9	5668.3	22
24	8131.7	1692.5	2401.9	5770.1	8201.8	1728.1	2474.3	5871.8	24
26	8134.0	1693.6	2404.3	5773.5	8204.2	1729.3	2476.7	5875.2	26
28	8136.4	1694.8	2406.6	5776.9	8206.5	1730.5	2479.2	5878.6	28
30	8138.7	1696.0	2409.0	5780.2	8208.8	1731.7	2481.6	5882.0	30
32	8141.1	1697.2	2411.4	5783.6	8211.1	1732.9	2484.1	5885.4	32
34	8143.4	1698.4	2413.8	5787.0	8213.5	1734.1	2486.5	5888.9	34
36	8145.8	1699.6	2416.2	5790.3	8215.8	1735.3	2489.0	5892.3	36
38	8148.1	1700.7	2418.6	5793.7	8218.1	1736.4	2491.5	5895.7	38
40	8150.4	1701.9	2421.0	5797.1	8220.4	1737.6	2493.9	5899.2	40
42	8152.8	1703.1	2423.4	5800.4	8222.8	1738.8	2496.4	5902.6	42
44	8155.1	1704.3	2425.8	5803.8	8225.1	1740.0	2498.9	5906.0	44
46	8157.5	1705.5	2428.2	5807.2	8227.4	1741.2	2501.3	5909.4	46
48	8159.8	1706.7	2430.6	5810.6	8229.7	1742.4	2503.8	5912.9	48
50	8162.2	1707.9	2433.0	5814.0	8232.0	1743.6	2506.3	5916.3	50
52	8164.5	1709.0	2435.4	5817.3	8234.3	1744.8	2508.7	5919.8	52
54	8166.8	1710.2	2437.9	5820.7	8236.7	1746.0	2511.2	5923.2	54
56	8169.2	1711.4	2440.3	5824.1	8239.0	1747.2	2513.7	5926.7	56
58	8171.5	1712.6	2442.7	5827.5	8241.3	1748.4	2516.2	5930.1	58
60	8173.9	1713.8	2445.1	5830.9	8243.6	1749.6	2518.7	5933.6	60

Table A-5. Functions of 1° curves (continued)
92°

Table A-5. Functions of 1° curves (continued)

	96°				97°				
	LC	M	E	T	LC	M	E	T	
0	8516.4	1895.9	2833.4	6363.8	8583.0	1933.2	2917.5	6476.6	0
2	8518.7	1897.1	2836.1	6367.5	8585.2	1934.4	2920.3	6480.4	2
4	8520.9	1898.4	2838.9	6371.3	8587.5	1935.7	2923.2	6484.2	4
6	8523.1	1899.6	2841.7	6375.0	8589.7	1936.9	2926.0	6488.0	6
8	8525.4	1900.8	2844.5	6378.7	8591.9	1938.2	2928.9	6491.8	8
10	8527.6	1902.1	2847.2	6382.5	8594.1	1939.4	2931.7	6495.6	10
12	8529.8	1903.3	2850.0	6386.2	8596.3	1940.7	2934.6	6499.4	12
14	8532.0	1904.6	2852.8	6389.9	8598.5	1941.9	2937.5	6503.2	14
16	8534.3	1905.8	2855.6	6393.7	8600.7	1943.2	2940.3	6507.1	16
18	8536.5	1907.0	2858.4	6397.4	8602.9	1944.4	2943.2	6510.9	18
20	8538.7	1908.3	2861.2	6401.2	8605.1	1945.7	2946.7	6514.7	20
22	8540.9	1909.5	2864.0	6404.9	8607.3	1946.9	2948.9	6518.5	22
24	8543.2	1910.8	2866.7	6408.7	8609.5	1948.2	2951.8	6522.3	24
26	8545.4	1912.0	2869.5	6412.4	8611.7	1949.4	2954.7	6526.2	26
28	8547.6	1913.3	2872.3	6416.2	8613.9	1950.7	2957.6	6530.0	28
30	8549.8	1914.5	2875.1	6419.9	8616.1	1952.0	2960.4	6533.8	30
32	8552.0	1915.7	2877.9	6423.7	8618.3	1953.2	2963.3	6537.7	32
34	8554.3	1917.0	2880.8	6427.5	8620.5	1954.5	2966.2	6541.5	34
36	8556.5	1918.2	2883.6	6431.2	8622.7	1955.7	2969.1	6545.3	36
38	8558.7	1919.5	2886.4	6435.0	8624.9	1957.0	2972.0	6549.2	38
40	8560.9	1920.7	2889.2	6438.8	8627.1	1958.2	2974.9	6553.0	40
42	8563.1	1922.0	2892.0	6442.5	8629.3	1959.5	2977.8	6556.9	42
44	8565.3	1923.2	2894.8	6446.3	8631.5	1960.7	2980.7	6560.7	44
46	8567.6	1924.5	2897.7	6450.1	8633.7	1962.0	2983.6	6564.6	46
48	8569.8	1925.7	2900.5	6453.9	8635.8	1963.2	2986.5	6568.4	48
50	8572.0	1927.0	2903.3	6457.6	8638.0	1964.5	2989.4	6572.3	50
52	8574.2	1928.2	2906.1	6461.4	8640.2	1965.8	2992.3	6576.2	52
54	8576.4	1929.4	2909.0	6465.2	8642.4	1967.0	2995.2	6580.0	54
56	8578.6	1930.7	2911.8	6469.0	8644.6	1968.3	2998.1	6583.9	56
58	8580.8	1931.9	2914.7	6472.8	8646.8	1969.5	3001.1	6587.7	58
60	8583.0	1933.2	2917.5	6476.6	8649.0	1970.8	3004.0	6591.6	60
	98°				99°				
	LC	M	E	T	LC	M	E	T	
0	8649.0	1970.8	3004.0	6591.6	8714.3	2008.7	3092.9	6709.0	0
2	8651.2	1972.0	3006.9	6595.5	8716.4	2009.9	3095.9	6712.9	2
4	8653.3	1973.3	3009.8	6599.4	8718.6	2011.2	3098.9	6716.9	4
6	8655.6	1974.6	3012.8	6603.2	8720.7	2012.5	3101.9	6720.8	6
8	8657.7	1975.8	3015.7	6607.1	8722.9	2013.7	3104.9	6724.8	8
10	8659.9	1977.1	3018.6	6611.0	8725.1	2015.0	3107.9	6728.8	10
12	8662.1	1978.3	3021.6	6614.9	8727.2	2016.3	3111.0	6732.7	12
14	8664.3	1979.6	3024.5	6618.8	8729.4	2017.5	3114.0	6736.7	14
16	8666.4	1980.9	3027.5	6622.7	8731.5	2018.8	3117.0	6740.7	16
18	8668.6	1982.1	3030.4	6626.6	8733.7	2020.1	3120.0	6744.6	18
20	8670.8	1983.4	3033.3	6630.5	8735.9	2021.4	3123.1	6748.6	20
22	8673.0	1984.4	3036.3	6634.4	8738.0	2022.6	3126.1	6752.6	22
24	8675.2	1985.9	3039.3	6638.3	8740.2	2023.9	3129.1	6756.6	24
26	8677.3	1987.2	3042.2	6642.2	8742.3	2025.2	3132.2	6760.6	26
28	8679.5	1988.4	3045.2	6646.1	8744.5	2026.4	3135.2	6764.6	28
30	8681.7	1989.7	3048.1	6650.0	8746.6	2027.7	3138.3	6768.6	30
32	8683.9	1991.0	3051.1	6653.9	8748.8	2029.0	3141.3	6772.6	32
34	8686.0	1992.2	3054.1	6657.8	8750.9	2030.3	3144.4	6776.6	34
36	8688.2	1993.5	3057.0	6661.7	8753.1	2031.5	3147.4	6780.6	36
38	8690.4	1994.7	3060.0	6665.7	8755.3	2032.8	3150.5	6784.6	38
40	8692.6	1996.0	3063.0	6669.6	8757.4	2034.1	3153.5	6788.6	40
42	8694.7	1997.3	3066.0	6673.5	8759.5	2035.4	3156.6	6792.6	42
44	8696.9	1998.5	3068.9	6677.4	8761.7	2036.6	3159.7	6796.6	44
46	8699.1	1999.8	3071.9	6681.4	8763.8	2037.9	3162.7	6800.6	46
48	8701.2	2001.1	3074.9	6685.3	8766.0	2039.2	3165.8	6804.6	48
50	8703.4	2002.3	3077.9	6689.2	8768.1	2040.5	3168.9	6808.6	50
52	8705.6	2003.6	3080.9	6693.2	8770.3	2041.7	3172.0	6812.6	52
54	8707.8	2004.9	3083.9	6697.1	8772.4	2043.0	3175.1	6816.7	54
56	8709.9	2006.1	3086.9	6701.1	8774.6	2044.3	3178.1	6820.7	56
58	8712.1	2007.4	3089.9	6705.2	8776.7	2045.6	3181.2	6824.7	58
60	8714.3	2008.7	3092.9	6709.0	8778.9	2046.8	3184.3	6828.8	60

Table A-5. Functions of 1° curves (continued)

	100°				101°				
	LC	M	E	T	LC	M	E	T	
0	8778.9	2046.8	3184.3	6828.8	8842.8	2085.3	3278.3	6951.0	0
2	8781.0	2048.1	3187.4	6832.8	8844.9	2086.6	3281.5	6955.2	2
4	8783.1	2049.4	3190.5	6836.8	8847.0	2087.8	3284.7	6959.3	4
6	8785.3	2050.7	3193.6	6849.9	8849.2	2089.1	3287.9	6963.4	6
8	8787.4	2051.9	3196.7	6844.9	8851.3	2090.4	3291.1	6967.6	8
10	8789.6	2053.2	3199.8	6849.0	8853.4	2091.7	3294.3	6971.7	10
12	8791.7	2054.5	3202.9	6853.0	8855.5	2093.0	3297.5	6975.8	12
14	8793.9	2055.8	3206.0	6857.1	8857.6	2094.3	3300.7	6980.0	14
16	8796.0	2057.1	3209.1	6861.1	8859.8	2095.6	3303.9	6984.1	16
18	8798.9	2958.3	3212.2	6865.2	8861.9	2096.9	3307.1	6988.2	18
20	8800.3	2059.6	3215.4	6869.2	8864.0	2098.2	3310.3	6992.4	20
22	8802.4	2060.9	3218.5	6873.3	8866.1	2099.4	3313.5	6996.6	22
24	8804.5	2062.2	3221.6	6877.4	8868.2	2100.7	3316.7	7000.7	24
26	8806.7	2063.5	3224.7	6681.4	8870.3	2102.0	3319.9	6004.9	26
28	8808.8	2064.7	3227.9	6885.5	8872.4	2103.3	3323.1	7009.0	28
30	8810.9	2066.0	3231.0	6889.6	8874.5	2104.6	3326.4	7013.2	30
32	8813.1	2067.3	3234.1	6893.7	8876.7	2105.9	3329.6	7017.3	32
34	8815.2	2068.6	3237.3	6897.8	8878.8	2107.2	3332.8	7021.5	34
36	8817.3	2069.9	3240.4	6901.8	8880.9	2108.5	3336.0	7025.7	36
38	8819.5	2071.1	3243.5	6905.9	8883.0	2109.8	3339.3	7209.9	38
40	8821.6	2072.4	3246.7	6910.0	8885.1	2111.1	3342.5	7034.0	40
42	8823.7	2073.7	3249.8	6914.1	8887.2	2112.4	3345.8	7038.2	42
44	8825.8	2075.0	3253.0	6918.2	8889.3	2113.6	3349.0	7042.4	44
46	8828.0	2076.3	3256.2	6922.3	8891.4	2114.9	3352.3	7046.6	46
48	8830.1	2077.6	3259.3	6926.4	8893.5	2116.2	3355.5	7050.8	48
50	8832.2	2078.9	3262.5	6930.5	8895.6	2117.5	3358.8	7055.0	50
52	8834.3	2080.1	3265.7	6934.6	8897.7	2118.8	3362.0	7059.2	52
54	8836.4	2081.4	3268.8	6938.7	8899.8	2120.1	3365.5	7063.4	54
56	8838.6	2082.7	3272.0	6942.8	8901.9	2121.4	3368.7	7067.6	56
58	8840.7	2084.0	3275.2	6946.9	8904.0	2122.7	3372.0	7071.8	58
60	8842.8	2085.3	3278.3	6951.0	8906.1	2124.0	3375.1	7076.0	60
	- 102°				$103{ }^{\circ}$				
	LC	M	E	T	LC	M	E	T	
0	8906.1	2124.0	3375.1	7076.0	8968.7	2163.0	3474.6	7203.6	0
2	8908.2	2125.3	3378.3	7080.2	8970.8	2164.3	3478.0	7207.9	2
4	8910.3	2126.6	3381.6	7084.4	8972.9	2165.6	3481.4	7212.2	4
6	8912.4	2127.9	3384.9	7088.6	8974.9	2166.9	3484.7	7216.5	6
8	8914.5	2129.2	3388.2	7092.8	8977.0	2168.2	3488.1	7220.8	8
10	8916.6	2130.5	3391.5	7097.1	8979.1	2169.5	3491.5	7225.1	10
12	8918.7	2131.8	3394.7	7101.3	8981.1	2170.8	3494.9	7229.5	12
14	8920.8	2133.1	3398.0	7105.5	8983.2	2172.1	3498.3	7233.8	14
16	8922.9	2134.4	3401.3	7109.7	8985.3	2173.4	3501.6	7238.1	16
18	8925.0	2135.7	3404.6	7114.0	8987.3	2174.7	3505.3	7242.4	18
20	8927.0	2137.0	3407.9	7118.2	8989.4	2176.1	3508.4	7246.8	20
22	8929.1	2138.3	3411.2	7122.4	8991.5	2177.4	3511.8	7251.1	22
24	8931.2	2139.6	3414.5	7126.7	8993.5	2178.7	3515.2	7255.4	24
26	8933.3	2140.9	3417.9	7130.9	8995.6	2180.0	3518.7	7259.8	26
28	8935.4	2142.2	3421.2	7135.2	8997.7	2181.3	3522.1	7264.1	28
30	8937.5	2143.5	3424.5	7139.4	8999.7	2182.6	3525.5	7268.5	30
32	8939.6	2144.8	3427.8	7143.7	9001.8	2183.9	3528.9	7272.8	32
34	8941.6	2146.1	3431.1	7148.0	9003.9	2185.2	3532.3	7277.2	34
36	8943.7	2147.4	3434.5	7152.2	9005.9	2186.5	3535.7	7281.5	36
38	8945.8	2148.7	3437.8	7156.5	9008.0	2187.8	3539.2	7285.9	38
40	8947.9	2150.0	3441.1	7160.7	9010.0	2189.1	3542.6	7290.3	40
42	8950.0	2151.3	3444.4	7165.0	9012.1	2190.5	3546.0	7294.6	42
44	8952.1	2152.6	3447.8	7169.3	9014.2	2191.8	3549.5	7299.0	44
46	8954.1	2153.9	3451.1	7173.6	9016.2	2193.1	3552.9	7303.4	46
48	8956.2	2155.2	3454.5	7177.9	9018.3	2194.4	3556.3	7307.7	48
50	8958.3	2156.5	3457.8	7182.1	9020.3	2195.7	3559.8	7312.1	50
52	8960.4	2157.8	3461.2	7186.4	9022.4	2197.0	3563.2	7316.5	52
54	8962.5	2159.1	3464.5	7190.7	9024.5	2198.3	3566.7	7320.9	54
56	8964.5	2160.4	3467.9	7195.0	9026.5	2199.6	3570.2	7325.3	56
58	8966.6	2161.7	3471.2	7199.3	9028.6	2200.9	3573.6	7329.7	58
60	8968.7	2163.0	3474.6	7203.6	9030.6	2202.3	3577.1	7334.1	60

Table A-5. Functions of 1° curves (continued)

	$104{ }^{\circ}$				105°				
	LC	M	E	T	LC	M	E	T	
0	9030.6	2202.3	3577.1	7334.1	9091.8	2241.8	3682.6	7467.5	0
2	9032.7	2203.6	3580.5	7338.5	9093.9	2243.1	3686.1	7472.0	2
4	9034.7	2204.9	3584.0	7342.9	9095.9	2244.4	3689.7	7476.5	4
6	9036.8	2206.2	3587.5	7347.3	9097.9	2245.8	3693.3	7481.0	6
8	9038.8	2207.5	3591.0	7351.7	9099.9	2247.1	3696.9	7485.5	8
10	9040.9	2208.8	3594.4	7356.1	9102.0	2248.4	3700.4	7490.0	10
12	9042.9	2210.2	3597.9	7360.5	9104.0	2249.7	3704.0	7494.5	12
14	9045.0	2211.5	3601.4	7364.9	9106.0	2251.1	3707.6	7499.1	14
16	9047.0	2212.8	3604.9	7369.4	9108.0	2252.4	3711.2	7503.6	16
18	9049.1	2214.1	3608.4	7373.8	9110.1	2253.7	3714.8	7508.1	18
20	9051.1	2215.4	3611.9	7378.2	9112.1	2255.0	3718.4	7512.6	20
22	9053.1	2216.7	3615.4	7382.6	9114.1	2256.4	3722.0	7517.2	22
24	9055.2	2218.0	3618.9	7387.1	9116.1	2257.7	3725.6	7521.7	24
26	9057.2	2219.4	3622.4	7391.5	9118.1	2259.0	3729.3	7526.3	26
28	9059.3	2220.7	3625.9	7396.0	9120.2	2260.3	3732.9	7530.8	28
30	9061.3	2222.0	3629.4	7400.4	9122.2	2261.7	3736.5	7535.3	30
32	9063.3	2223.3	3633.0	7404.8	9124.2	2263.0	3740.1	7539.9	32
34	9065.4	2224.6	3636.5	7409.3	9126.2	2264.3	3743.7	7544.4	34
36	9067.4	2226.0	3640.0	7413.8	9128.2	2265.7	3747.4	7549.0	36
38	9069.5	2227.3	3643.5	7418.2	9130.2	2267.0	3751.0	7553.6	38
40	9071.5	2228.6	3647.1	7422.7	9132.3	2268.3	3754.6	7558.1	40
42	9073.5	2229.9	3650.6	7427.1	9134.3	2269.6	3758.3	7562.7	42
44	9075.6	2231.2	3654.1	7431.6	9136.3	2271.0	3761.9	7567.3	44
46	9077.6	2232.6	3657.7	7436.1	9138.3	2272.3	3765.6	7571.8	46
48	9079.6	2233.9	3661.2	7440.6	9140.3	2273.6	3769.2	7576.4	48
50	9081.7	2235.2	3664.8	7445.0	9142.3	2275.0	3772.9	7581.0	50
52	9083.7	2236.5	3668.3	7449.5	9144.3	2276.3	3776.5	7585.6	52
54	9085.7	2237.8	3671.9	7454.0	9146.3	2277.6	3780.2	7590.2	54
56	9087.8	2239.2	3675.4	7458.5	9148.3	2278.9	3783.9	7594.8	56
58	9089.8	2240.5	3679.0	7463.0	9150.4	2280.3	3787.5	7599.4	58
60	9091.8	2241.8	3682.6	7467.5	9152.4	2281.6	3791.2	7604.0	60

Table A-6. Corrections for tangent and external distances
(This table is to convert tabular values in table A-5 to the chord definition.)

Example

Required are the tangent, external distance, and length of curve for a curve of $18^{\circ} 20^{\prime}$ and an I angle of $9^{\circ} 46^{\prime}$.

Tangent: $T=\frac{\text { Tabluar Entry }}{\text { Degree of Curve }}=\quad \frac{489.56}{18.333}=26.70$
$+\left(\right.$ correction to be added from table A-6 for $18^{\circ} 20^{\prime}$ and $\left.9^{\circ} 46^{\prime}\right) 0.12^{\prime}=26.82^{\prime}$

External Distance $=\frac{\text { Tabluar Entry }}{\text { Degree of Curve }}=\frac{20.88}{18.333}=1.139$
$+\left(\right.$ correction to be added from table A-6 for $18^{\circ} 20^{\prime}$ and $\left.9^{\circ} 46^{\prime}\right) 0.005=1.14^{\prime}$

Table A-6. Corrections for tangent and external distance (continued)

Curve													
Angle	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°
5°	. 02	. 03	. 05	. 06	. 08	. 10	. 11	. 13	. 15	. 16	. 18	. 20	. 21
10°	. 03	. 06	. 09	. 13	. 16	. 19	22	. 25	. 28	. 31	. 34	. 38	. 42
15°	. 04	. 10	. 14	. 19	. 24	. 29	. 34	. 39	. 45	. 51	. 53	. 58	. 63
20°	. 06	. 13	. 19	. 26	. 32	. 39	. 45	. 51	. 58	. 65	. 72	79	. 84
25°	. 08	. 16	. 24	. 33	40	. 49	. 58	. 67	. 75	. 83	. 90	. 99	1.06
30°	. 10	. 19	. 29	. 39	. 49	. 59	. 69	. 79	. 89	. 99	1.09	1.20	1.29
35°	. 11	. 22	. 34	. 47	. 58	. 69	. 80	. 93	1.05	1.17	1.29	1.42	1.54
40°	. 13	. 26	. 40	. 53	. 67	. 80	. 93	1.06	1.20	1.34	1.49	1.64	1.79
45°	. 15	. 30	. 44	. 60	76	. 91	1.06	1.21	1.37	1.52	1.70	1.87	2.04
50°	. 17	. 34	. 51	. 68	. 85	1.02	1.19	1.36	1.54	1.72	1.91	2.10	2.29
55°	. 19	. 38	. 57	. 76	. 95	1.14	1.32	1.52	1.72	1.92	2.14	2.35	2.56
60°	. 21	. 42	. 63	. 84	1.05	1.27	1.49	1.71	1.92	2.17	2.38	2.60	2.83
65°	. 23	. 46	. 69	. 93	1.16	1.40	1.64	1.88	2.13	2.38	2.63	2.88	3.13
70°	. 25	. 51	. 76	1.02	1.28	1.54	1.80	2.06	2.33	2.60	2.88	3.16	3.44
75°	. 27	. 56	. 83	1.12	1.40	1.69	1.98	2.27	2.57	2.87	3.16	3.47	3.78
80°	. 30	. 61	. 91	1.22	1.53	1.84	2.15	2.46	2.78	3.10	3.44	3.78	4.12
85°	. 33	. 66	1.00	1.33	1.68	2.02	2.36	2.70	3.05	3.40	3.77	4.14	4.55
90°	. 36	. 72	1.09	1.45	1.83	2.20	2.57	2.94	3.32	3.70	4.10	4.50	4.91
95°	. 39	. 79	1.19	1.55	2.00	2.40	2.80	3.20	3.61	4.02	4.49	4.98	5.38
100°	. 43	. 86	1.30	1.74	2.18	2.62	3.06	3.50	3.95	4.40	4.88	5.37	5.85
105°	. 46	. 94	1.42	1.90	2.38	2.87	3.34	3.84	4.35	4.84	5.35	5.87	6.40
110°	. 50	1.03	1.55	2.08	2.60	3.14	3.66	4.21	4.76	5.31	5.86	6.43	7.01
115°	. 54	1.13	1.70	2.29	2.86	3.45	4.03	4.63	5.23	5.83	6.44	7.07	7.70
120°	. 61	1.25	1.89	2.52	3.16	3.81	4.44	5.11	5.78	6.44	7.11	7.80	8.51
Curve													
$\begin{array}{lllllllllllllllllllllll} & \text { Angle } & 5^{\circ} & 10^{\circ} & 15^{\circ} & 20^{\circ} & 25^{\circ} & 30^{\circ} & 35^{\circ} & 40^{\circ} & 45^{\circ} & 50^{\circ} & 55^{\circ} & 60^{\circ} & 65^{\circ}\end{array}$													
5°	. 000	. 000	. 001	. 001	. 002	. 002	. 002	. 003	. 003	. 004	. 004	. 004	. 005
10°	. 001	. 003	. 004	. 006	. 007	. 008	. 009	. 011	. 012	. 014	. 015	. 017	. 018
15°	. 003	. 007	. 010	. 014	. 018	. 023	. 027	. 029	. 032	. 035	. 039	. 043	. 047
20°	. 006	. 011	. 017	. 022	. 028	. 034	. 038	. 045	. 051	. 057	. 063	. 070	. 076
25°	. 009	. 018	. 027	. 036	. 046	. 056	. 065	. 074	. 083	. 093	. 106	. 120	. 127
30°	. 013	. 025	. 038	. 051	. 065	. 078	. 090	. 103	. 116	. 129	. 149	. 170	. 179
35°	. 018	. 035	. 054	. 072	. 086	. 109	. 131	. 153	. 175	. 197	. 213	. 230	. 247
40°	. 023	. 046	. 070	. 093	. 117	. 141	. 172	. 203	. 234	. 265	. 277	. 290	. 315
45°	. 030	. 060	. 093	. 119	. 153	. 184	. 216	. 254	. 289	. 325	.351	. 378	. 411
50°	. 037	. 075	. 116	. 151	. 189	. 227	. 266	. 305	. 345	. 384	. 425	. 467	. 508
55°	. 046	. 093	. 142	. 188	236	. 283	. 332	. 381	. 420	. 479	. 530	. 582	. 641
60°	. 056	. 112	. 168	. 225	283	. 340	. 398	. 457	. 516	. 575	. 636	. 697	. 774
65°	. 067	. 135	. 204	. 273	. 343	. 412	483	. 554	. 625	. 697	. 711	. 845	. 922
70°	. 080	. 159	. 240	. 321	. 403	. 485	. 568	. 652	. 735	819	. 906	. 994	1.08
75°	. 095	. 182	. 286	. 383	. 480	. 578	. 678	. 777	. 877	. 977	1.07	1.18	1.29
80°	. 110	. 220	. 332	445	. 558	. 671	787	. 903	1.02	1.13	1.25	1.38	1.50
85°	. 128	2.59	. 391	. 524	. 657	. 790	. 926	1.06	1.20	1.34	1.47	1.62	1.76
90°	. 149	. 299	. 450	. 603	. 756	. 910	1.07	1.22	1.38	1.54	1.70	1.87	2.03
95°	. 174	. 350	. 522	. 706	. 985	1.06	1.25	1.43	1.62	1.80	1.99	2.18	2.38
100°	. 200	. 401	. 604	. 809	1.01	1.22	1.43	1.64	1.85	2.06	2.28	2.50	2.73
105°	. 230	. 470	. 700	. 938	1.17	1.42	1.65	1.90	2.14	2.39	2.64	2.90	3.16
110°	. 260	. 535	. 808	1.08	1.36	1.63	1.91	2.19	2.49	2.61	3.05	3.35	3.65
115°	. 307	. 624	. 939	1.26	1.57	1.89	2.21	2.54	2.87	3.20	3.53	3.88	4.23
120°	. 339	. 720	1.08	1.45	1.82	2.20	2.56	2.95	3.33	3.72	4.10	4.50	4.91

Table A-7. Deflections and chords for 25-, 50-, and 100-foot arcs

Example: The square of $26=676$; the cube of $26=17,576$; the square root of 26 $=5.0990$; the cube root of $26=2.9625$.

To find the square root of a decimal or mixed number, first multiply the number by either 100 or 10,000 to eliminate as many of the decimals as possible. Round the result off to the nearest whole number. Locate this number in the square column. Determine the desired square root by taking the corresponding number from the number column and moving the decimal point. If the original number was multiplied by 100 , move the decimal one place to the left; if it was multiplied by 10,000 , move the decimal two places to the left.

Example:

Find the square root of 5.246 to the first decimal place. Multiply by 100 . The result is 524 . The nearest number in the column of squares is 529 , which is opposite 23 in the column of numbers. Move the decimal point one place to the left. This gives 2.3 as the desired root to the first place of decimals.

Find the square root of 5.246 to the second decimal place. Multiply by 10,000 . The result is 52,460 . The nearest number in the column of squares is 52,441 , which is opposite 229 in the column of numbers.

Move the decimal point two places to the left. The result is 2.29
To find the cube root of a similar number, multiply by 1,000 or by $1,000,000$, and find the nearest number in the column of cubes. The corresponding number in the column of numbers with a decimal point one or two places to the left is the required root. Perform similarly to preceding example.

Table A-8. Squares, cubes, square roots, and cube roots (continued)

To find the square root or cube root of number greater than 1,000 , find the nearest number in the column of squares or cubes and take the corresponding number in the first column. The number thus found is correct for the number of figures it contains.

To find various roots:
For the fourth root, take the square root of the square root.
For the sixth root, take the square root of the cube root or vice versa.
Higher roots, whose indices can be factored into 2 s and 3 s , maybe obtained in a similar manner.

No.	Square	Cube	Square Root	Cube Root	No.	Square	Cube	Square Root	Cube Root
1	1	1	1.0000	1.	21	441	9261	4.5826	2.7589
2	4	8	1.4142	1.2599	22	484	10648	4.6904	2.8020
3	9	27	1.7321	1.4422	23	529	12167	4.7958	2.8439
4	16	64	2.0000	1.5874	24	576	13824	4.8990	2.8845
5	25	125	2.2361	1.7100	25	625	15625	5.0000	2.9240
6	36	216	2.4495	1.8171	26	676	17576	5.0990	2.9625
7	49	343	2.6458	1.9129	27	729	19683	5.1962	3.0000
8	64	512	2.8284	2.0000	28	784	21952	5.2915	3.0366
9	81	729	3.0000	2.0801	29	841	24389	5.3852	3.0723
10	100	1000	3.1623	2.1544	30	900	27000	5.4772	3.1072
11	121	1331	3.3166	2.2240	31	961	29791	5.5678	3.1414
12	144	1728	3.4641	2.2894	32	1024	32768	5.6569	3.1748
13	169	2197	3.6056	2.3513	33	1089	35937	5.7446	3.2075
14	196	2744	3.7417	2.4101	34	1156	39304	5.8310	3.2396
15	225	3375	3.8730	2.4662	35	1225	42875	5.9161	3.2711
16	256	4096	4.0000	2.5198	36	1296	46656	6.0000	3.3019
17	289	4913	4.1231	2.5713	37	1369	50653	6.0828	3.3322
18	324	5832	4.2426	2.6207	38	1444	54872	6.1644	3.3620
19	361	6859	4.3589	2.6684	39	1521	59315	6.2450	3.3912
20	400	8000	4.4721	2.7144	40	1600	64000	6.3246	3.4200

Table A-8. Squares, cubes, square roots, and cube roots

No.	Square	Cube	Square Root	Cube Root	No.	Square	Cube	Square Root	Cube Root
41	1681	68921	6.4031	3.4482	91	8281	753571	9.5394	4.4979
42	1764	74088	6.4807	3.4760	92	8464	778688	9.5917	4.5144
43	1849	79507	6.5574	3.5034	93	8649	804357	9.6437	4.5307
44	1936	85184	6.6332	3.5303	94	8836	830584	9.6954	4.5468
45	2025	91125	6.7082	3.5569	95	9025	857375	9.7468	4.5629
46	2116	97336	6.7823	3.5830	96	9216	884736	9.7980	4.5789
47	2209	103823	6.8557	3.6088	97	9409	912673	9.8489	4.5947
48	2304	110592	6.9282	3.6342	98	9604	941192	9.8995	4.6104
49	2401	117649	7.0000	3.6593	99	9801	970299	9.9499	4.6261
50	2500	125000	7.0711	3.6840	100	10000	1000000	10.0000	4.6416
51	2601	132651	7.1414	3.7084	101	10201	1030301	10.0499	4.6570
52	2704	140608	7.2111	3.7325	102	10404	1061208	10.0995	4.6723
53	2809	148877	7.2801	3.7563	103	10609	1092727	10.1489	4.6875
54	2916	157464	7.3485	3.7798	104	10816	1124864	10.1980	4.7027
55	3025	166375	7.4162	3.8030	105	11025	1157625	10.2470	4.7177
56	3136	175616	7.4833	3.8259	106	11236	1191016	10.2956	4.7326
57	3249	185193	7.5498	3.8485	107	11449	1225043	10.3441	4.7475
58	3364	195112	7.6158	3.8709	108	11664	1259712	10.3923	4.7622
59	3481	205379	7.6811	3.8930	109	11881	1295029	10.4403	4.7769
60	3600	216000	7.7460	3.9149	110	12100	1331000	10.4881	4.7914
61	3721	226981	7.8102	3.9365	111	12321	1367631	10.5357	4.8059
62	3844	238328	7.8740	3.9579	112	12544	1404928	10.5830	4.8203
63	3969	250047	7.9373	3.9791	113	12769	1442896	10.6301	4.8346
64	4096	262144	8.0000	4.0000	114	12996	1481544	10.6771	4.8488
65	4225	274625	8.0623	4.0207	115	13225	1520875	10.7238	4.8629
66	4356	287496	8.1240	4.0412	116	13456	1560896	10.7703	4.8770
67	4489	300763	8.1854	4.0615	117	13689	1601613	10.8167	4.8910
68	4624	314432	8.2462	4.0817	118	13924	1643032	10.8628	4.9049
69	4761	328509	8.3066	4.1016	119	14161	1685159	10.9087	4.9187
70	4900	343000	8.3666	4.1213	120	14400	1728000	10.9545	4.9324
71	5041	357911	8.4261	4.1408	121	14641	1771561	11.0000	4.9461
72	5184	373248	8.4853	4.1602	122	14884	1815848	11.0454	4.9597
73	5329	389017	8.5440	4.1793	123	15129	1860867	11.0905	4.9732
74	5476	405224	8.6023	4.1983	124	15376	1906624	11.1355	4.9866
75	5625	421875	8.6603	4.2172	125	15625	1953125	11.1803	5.0000
76	5776	438976	8.7178	4.2358	126	15876	2000376	11.2250	5.0133
77	5929	456533	8.7750	4.2543	127	16129	2048383	11.2694	5.0265
78	6084	474552	8.8318	4.2727	128	16384	2097152	11.3137	5.0397
79	6241	493039	8.8882	4.2908	129	16641	2146689	11.3578	5.0528
80	6400	512000	8.9443	4.3089	130	16900	2197000	11.4018	5.0658
81	6561	531441	9.0000	4.3267	131	17161	2248091	11.4455	5.0788
82	6724	551368	9.0554	4.3445	132	17424	2299968	11.4891	5.0916
83	6889	571787	9.1104	4.3621	133	17689	2352637	11.5326	5.1045
84	7056	592704	9.1652	4.3795	134	17956	2406104	11.5758	5.1172
85	7225	614125	9.2195	4.3968	135	18225	2460375	11.6190	5.1299
86	7396	636056	9.2736	4.4140	136	18496	2515456	11.6619	5.1426
87	7569	658503	9.3274	4.4310	137	18769	2571353	11.7047	5.1551
88	7744	681472	9.3808	4.4480	138	19044	2628072	11.7473	5.1676
89	7921	704969	9.4340	4.4647	139	19321	2685619	11.7898	5.1801
90	8100	729000	9.4868	4.4814	140	19600	2744000	11.8322	5.1925

Table A-8. Squares, cubes, square roots, and cube roots (continued)

No.	Square	Cube	Square Root	Cube Root	No.	Square	Cube	Square Root	Cube Root
141	19881	2803221	11.8743	5.2048	191	36481	6967871	13.8203	5.7590
142	20164	2863288	11.9164	5.2171	192	36864	7077888	13.8564	5.7690
143	20449	2924207	11.9583	5.2293	193	37249	7189057	13.8924	5.7790
144	20736	2985984	12.0000	5.2415	194	37636	7301384	13.9284	5.7890
145	21025	3048625	12.0416	5.2536	195	38025	7414875	13.9642	5.7989
146	21316	3112136	12.0830	5.2656	196	38416	7529536	14.0000	5.8088
147	21609	3176523	12.1244	5.2776	197	38809	7645373	14.0357	5.8186
148	21904	3241792	12.1655	5.2896	198	39204	7762392	14.0712	5.8285
149	22201	3307949	12.2066	5.3015	199	39601	7880599	14.1067	5.8383
150	22500	3375000	12.2474	5.3133	200	40000	8000000	14.1421	5.8480
151	22801	3442951	12.2882	5.3251	201	40401	8120601	14.1774	5.8578
152	23104	3511808	12.3288	5.3368	202	40804	8242408	14.2127	5.8675
153	23409	3581577	12.3693	5.3485	203	41209	8365427	14.2478	5.8771
154	23716	3652264	12.4097	5.3601	204	41616	8489664	14.2829	5.8868
155	24025	3723875	12.4499	5.3717	205	42025	8615125	14.3178	5.8964
156	24336	3796416	12.4900	5.3832	206	42436	8741816	14.3527	5.9059
157	24649	3869893	12.5300	5.3947	207	42849	8869743	14.3875	5.9155
158	24964	3944312	12.5698	5.4061	208	43264	8998912	14.4222	5.9250
159	25281	4019679	12.6095	5.4175	209	43681	9129329	14.4568	5.9345
160	25600	4096000	12.6491	5.4288	210	44100	9261000	14.4914	5.9439
161	25921	4173281	12.6886	5.4401	211	44521	9393931	14.5258	5.9533
162	26244	4251528	12.7279	5.4514	212	44944	9528128	14.5602	5.9627
163	26569	4330747	12.7671	5.4626	213	45369	9663597	14.5945	5.9721
164	26896	4410944	12.8062	5.4737	214	45796	9800344	14.6287	5.9814
165	27225	4492125	12.8452	5.4848	215	46225	9938375	14.6629	5.9907
166	27556	4574296	12.8841	5.4959	216	46656	10077696	14.6969	6.0000
167	27889	4657463	12.9228	5.5069	217	47089	10218313	14.7309	6.0092
168	28224	4741631	12.9615	5.5178	218	47524	10360232	14.7648	6.0185
169	28561	4826809	13.0000	5.5288	219	47961	10503459	14.7986	6.0277
170	28900	4913000	13.0384	5.5397	220	48400	10648000	14.8324	6.0368
171	29241	5000211	13.0767	5.5505	221	48841	10793861	14.8661	6.0459
172	29584	5088448	13.1149	5.5613	222	49284	10941048	14.8997	6.0550
173	29929	5177717	13.1529	5.5721	223	49729	11089567	14.9332	6.0641
174	30276	5268024	\$3.1909	5.5828	224	50176	11239424	14.9666	6.0732
175	30625	5359375	13.2288	5.5934	225	50625	11390625	15.0000	6.0822
176	30976	5451776	13.2665	5.6041	226	51076	11543176	15.0333	6.0912
177	31329	5545233	13.3041	5.6147	227	51529	11697083	15.0665	6.1002
178	31684	5639752	13.3417	5.6252	228	51984	11852352	15.0997	6.1091
179	32041	5735339	13.3791	5.6357	229	52441	12008989	15.1327	6.1180
180	32400	5832000	13.4164	5.6462	230	52900	12167000	15.1658	6.1269
181	32761	5929741	13.4536	5.6567	231	53361	12326391	15.1987	6.1358
182	33124	6028568	13.4907	5.6671	232	53824	12487168	14.2315	6.1446
183	33489	6128487	13.5277	5.6774	233	54289	12649337	15.2643	6.1534
184	33856	6229504	13.5647	4.6877	234	54756	12812904	15.2971	6.1622
185	34225	6331625	13.6015	5.6980	235	55225	12977875	15.3297	6.1710
186	34596	6434856	13.6382	5.7083	236	55696	13144256	15.3623	6.1797
187	34969	6539203	13.6748	5.7185	237	56169	13312053	15.3948	6.1885
188	35344	6644672	13.7113	5.7287	238	56644	13481272	15.4272	6.1972
189	35721	6751269	13.7477	5.7388	239	57121	13651919	15.4596	6.2058
190	36100	6859000	13.7840	5.7489	240	57600	13824000	15.4919	6.2145

Table A-8. Squares, cubes, square roots, and cube roots (continued)

No.	Square	Cube	Square Root	Cube Root	No.	Square	Cube	Square Root	Cube Root
241	58081	13997521	15.5242	6.2231	291	84681	24642171	17.0587	6.6267
242	58564	14172488	15.5563	6.2317	292	85264	24897088	17.0880	6.6343
243	59049	14348907	15.5885	6.2403	293	85849	25153757	17.1172	6.6419
244	59536	14526784	15.6205	6.2488	294	86436	25412184	17.1464	6.6494
245	60025	14706125	15.6525	6.2573	295	87025	25672375	17.1756	6.6569
246	60516	14886936	15.6844	6.2658	296	87616	25934336	17.2047	6.6644
247	61099	15069223	15.7162	6.2743	297	88209	26198073	17.2337	6.6719
248	61504	15252992	15.7480	6.2828	298	88804	26463592	17.2627	6.6794
249	62001	15438249	15.7797	6.2912	299	89401	26730899	17.2916	6.6869
250	62500	15625000	15.8114	6.2996	300	90000	27000000	17.3205	6.6943
251	63001	15813251	15.8430	6.3080	301	90601	27270901	17.3494	6.7018
252	63504	16003008	15.8745	6.3164	302	91204	27543608	17.3781	6.7092
253	64009	16194277	15.9060	6.3247	303	91809	27818127	17.4069	6.7166
254	64516	16387064	15.9374	6.3330	304	92416	28094464	17.4356	6.7240
255	65025	16581375	15.9687	6.3413	305	93025	28372625	17.4642	6.7313
256	65536	16777216	16.0000	6.3496	306	93636	28652616	17.4929	6.7387
257	66049	16974593	16.0312	6.3579	307	94249	28934443	17.5214	6.7460
258	66564	17173512	16.0624	6.3661	308	94864	29218112	17.5499	6.7533
259	67081	17373979	16.0935	6.3743	309	95481	29503629	17.5784	6.7606
260	67600	17576000	16.1245	6.3825	310	96100	29791000	17.6068	6.7679
261	68121	17779581	16.1555	6.3907	311	96721	30080231	17.6352	6.7752
262	68644	17984728	16.1864	6.3988	312	97344	30371328	17.6635	6.7824
263	69169	18191447	16.2173	6.4070	313	97969	30664297	17.6918	6.7897
264	69696	18399744	16.2481	6.4151	314	98596	30959144	17.7200	6.7969
265	70225	18609625	16.2788	6.4232	315	99225	31255875	17.7482	6.8041
266	70756	18821096	16.3095	6.4312	316	99856	31554496	17.7764	6.8113
267	71289	19034163	16.3401	6.4393	317	100489	31855013	17.8045	6.8185
268	71824	19248832	16.3707	6.4473	318	101124	32157432	17.8326	6.8256
269	72361	19465109	16.4012	6.4553	319	101761	32461759	17.8606	6.8328
270	72900	19683000	16.4317	6.4633	320	102400	32768000	17.8885	6.8399
271	73441	19902511	16.4621	6.4713	321	103041	33076161	17.9165	6.8470
272	73984	20123648	16.4924	6.4792	322	103684	33386248	17.9444	6.8541
273	74529	20346417	16.5227	6.4872	323	104329	33698267	17.9722	6.8612
274	75076	20570824	16.5529	6.4951	324	104976	34012224	18.0000	6.8683
275	75625	20796875	16.5831	6.5030	325	105625	34328125	18.0278	6.8753
276	76176	21024576	16.6132	6.5108	326	106276	34645976	18.0555	6.8824
277	76729	21253933	16.6433	6.5187	327	106929	34965783	18.0831	6.8894
278	77284	21484952	16.6733	6.5265	328	107584	35287552	18.1108	6.8964
279	77841	21717639	16.7033	6.5343	329	108241	35611289	18.1384	6.9034
280	78400	21952000	16.7332	6.5421	330	108900	35937000	18.1659	6.9104
281	78961	22188041	16.7631	6.5499	331	109561	36264691	18.1934	6.9174
282	79524	22425768	16.7929	6.5577	332	110224	36594368	18.2209	6.9244
283	80089	22665187	16.8226	6.5654	333	110889	36926037	18.2483	6.9313
284	80656	22906304	16.8523	6.5731	334	111556	37259704	18.2757	6.9382
285	81225	23149125	16.8819	6.5808	335	112225	37595375	18.3030	6.9451
286	81796	23393656	16.9115	6.5885	336	112896	37933056	18.3303	6.9521
287	82369	23639903	16.9411	6.5962	337	113569	38272753	18.3576	6.9589
288	82944	23887872	16.9706	6.6039	338	114244	38614472	18.3848	6.9658
289	83521	24137569	17.0000	6.6115	339	114921	38958219	18.4120	6.9727
290	84100	24389000	17.0294	6.6191	340	115600	39304000	18.4391	6.9795

Table A-8. Squares, cubes, square roots, and cube roots (continued)

No.	Square	Cube	Square Root	Cube Root	No.	Square	Cube	Square Root	Cube Root
341	116281	39651821	18.4662	6.9864	391	152881	59776471	19.7737	7.3124
342	116964	40001688	18.4932	6.9932	392	153664	60236288	19.7990	7.3186
343	117649	40353607	18.5203	7.0000	393	154449	60698457	19.8242	7.3248
344	118336	40707584	18.5472	7.0068	394	155236	61162984	19.8494	7.3310
345	113025	410636.25	${ }^{1} 8.5742$	7.0136	395	156025	61629875	19.8746	7.3372
346	119716	41421736	18.6011	7.0203	396	156816	62099136	19.8997	7.3434
347	120409	41781923	18.6279	7.0271	397	157609	62570773	19.9249	7.3496
348	121104	42144192	18.6548	7.0338	398	158404	63044792	19.9499	7.3558
349	121801	42508549	18.6815	7.0406	399	159201	63521199	19.9750	7.3619
350	122500	42875000	18.7083	7.0473	400	160000	64000000	20.0000	7.3681
351	123201	43243551	18.7350	7.0540	401	160801	64481201	20.0250	7.3742
352	123904	43614208	18.7617	7.0607	402	161604	64964808	20.0499	7.3803
353	124609	43986977	18.7883	7.0674	403	162409	65450827	20.0749	7.3864
354	125316	44361864	18.8149	7.0740	404	163216	65939264	20.0998	7.3925
355	126025	44738875	18.8414	7.0807	405	164025	66430125	20.1246	7.3986
356	126736	45118016	18.8680	7.0873	406	164836	66923416	20.1494	7.4047
357	127449	45499293	18.8944	7.0940	407	165649	67410143	20.1742	7.4108
358	128164	45882712	18.9209	7.1006	408	166464	67917312	20.1990	7.4169
359	128881	46268279	18.9473	7.1072	409	167281	68417929	20.2237	7.4229
360	129600	46656000	18.9737	7.1138	410	168100	68921000	20.2485	7.4290
361	130321	47045881	19.0000	7.1204	411	168921	69426531	20.2731	7.4350
362	131044	47437928	19.0263	7.1269	412	169744	69934528	20.2978	7.4410
363	131769	47832147	19.0526	7.1335	413	170569	70444997	20.3224	7.4470
364	132496	48228544	19.0788	7.1400	414	171396	70957944	20.3470	7.4530
365	133225	48627125	19.1050	7.1466	415	172225	71473375	20.3715	7.4590
366	133956	49027896	19.1311	7.1531	416	173056	71991296	20.3961	7.4650
367	134689	49430863	19.1572	7.1596	417	173889	72511713	20.4206	7.4710
368	135424	49836032	19.1833	7.1661	418	174724	73034632	20.4450	7.4770
369	136161	50243409	19.2094	7.1726	419	175561	73560059	20.4695	7.4829
370	136900	50653000	19.2354	7.1791	420	176400	74088000	20.4939	7.4889
371	137641	51064811	19.2614	7.1855	421	177241	74618461	20.5183	7.4948
372	138384	51478848	19.2873	7.1920	422	178084	75151448	20.5426	7.5007
373	139129	51895117	19.3132	7.1984	423	178929	75686967	20.5670	7.5067
374	139786	52313624	19.3391	7.2048	424	179776	76225024	20.5913	7.5126
375	140625	52734375	19.3649	7.2112	425	180625	76765625	20.6155	7.5185
376	141376	53157376	19.3907	7.2177	426	181476	77308776	20.6398	7.5244
377	142129	53582633	19.4165	7.2240	427	182329	77854483	20.6640	7.5302
378	142884	54010152	19.4422	7.2304	428	183184	78402752	20.6882	7.5361
379	143641	54439939	19.4679	7.2368	429	184041	78953589	20.7123	7.5420
380	144400	54872000	19.4936	7.2432	430	184900	79507000	20.7364	7.5478
381	145161	55306341	19.5192	7.2495	431	185761	80062991	20.7605	7.5537
382	145924	55742968	19.5448	7.2558	432	186624	80621568	20.7846	7.5595
383	146689	56181887	19.5704	7.2622	433	187489	81182737	20.8087	7.5654
384	147456	56623104	19.5959	7.2685	434	188356	81746504	20.8327	7.5712
385	148225	57066625	19.6214	7.2748	435	189225	82312875	20.8567	7.5770
386	148996	57512456	19.6469	7.2811	436	190096	82881856	20.8806	7.5828
387	149769	57960603	19.6723	7.2874	437	190969	83453453	20.9045	7.5886
388	150544	58411072	19.6977	7.2936	438	191844	84027672	20.9284	7.5944
389	151321	58863869	19.7231	7.2999	439	192721	84604519	20.9523	7.6001
390	152100	59319000	19.7484	7.3061	440	193600	85184000	20.9762	7.6059

Table A-8. Squares, cubes, square roots, and cube roots (continued)

No.	Square	Cube	Square Root	Cube Root	No.	Square	Cube	Square Root	Cube Root
441	194481	85766121	21.0000	7.6117	491	241081	118370771	22.1585	7.8891
442	195364	86350888	21.0238	7.6174	492	242064	119895488	22.1811	7.8944
443	196249	86938307	21.0476	7.6232	493	243049	119823157	22.2036	7.8998
444	197136	87528384	21.0713	7.6289	494	244036	120553784	22.2261	7.9051
445	198025	88121125	21.0950	7.6346	495	245025	121287375	22.2486	7.9105
446	198916	88716536	21.1187	7.6403	496	246016	122023936	22.2711	7.9158
447	198809	89314623	21.1424	7.6460	497	247009	122763473	22.2935	7.9211
448	200704	89915392	21.1660	7.6517	498	248004	123505992	22.3159	7.9264
449	201601	90518849	21.1896	7.6574	499	249001	124251499	22.3383	7.9317
450	202500	91125000	21.2132	7.6631	500	250000	125000000	22.3607	7.9370
451	203401	91733851	21.2368	7.6688	501	251001	125751501	22.3830	7.9423
452	204304	92345408	21.2603	7.6744	502	252004	126506008	22.4054	7.9476
453	205209	92959677	21.2838	7.6801	503	253009	127263527	22.4277	7.9528
454	206116	93576664	21.3073	7.6857	504	254016	128024064	22.4499	7.9581
455	207025	94196375	21.3307	7.6914	505	255025	128787625	22.4722	7.9634
456	207936	94818816	21.3542	7.6970	506	256036	129554216	22.4944	7.9686
457	208849	95443993	21.3776	7.7026	507	257049	130323843	22.5167	7.9739
458	209764	96071912	21.4009	7.7082	508	258064	131096512	22.5389	7.9791
459	210681	96702579	21.4243	7.7138	509	259081	131872229	22.5610	7.9843
460	211600	97336000	21.4476	7.7194	510	260100	132651000	22.5832	7.9896
461	212521	97972181	21.4709	7.7250	511	261121	133432831	22.6053	7.9948
462	213444	98611128	21.4942	7.7306	512	262144	134217728	22.6274	8.0000
463	214369	99252847	21.5174	7.7362	513	263169	135005697	22.6495	8.0052
464	215296	99897344	21.5407	7.7418	514	264196	135796744	22.6716	8.0104
465	216225	100544625	21.5639	7.7473	515	265225	136590875	22.6936	8.0156
466	217156	101194696	21.5870	7.7529	516	266256	137388096	22.7156	8.0208
467	218089	101847563	21.6102	7.7584	517	267289	138188413	22.7376	8.0206
468	219024	102503232	21.6333	7.7639	518	268324	138991832	22.7596	8.0311
469	219961	103161709	21.6564	7.7695	519	269361	139798359	22.7816	8.0363
470	220900	103823000	21.6795	7.7750	520	270400	140608000	22.8035	8.0415
471	221841	104487111	21.7025	7.7805	521	271441	141420761	22.8254	8.0466
472	222784	105154048	21.7256	7.7860	522	272484	142236648	22.8473	8.0517
473	223729	105823817	21.7486	7.7915	523	273529	143055667	22.8692	8.0569
474	224676	106496424	21.7715	7.7970	524	274576	143877824	22.8910	8.0620
475	225625	107171875	21.7945	7.8025	525	275625	144703125	22.9129	8.0671
476	226576	107850176	21.8174	7.8079	526	276676	145531576	22.9347	8.0723
477	227529	108531333	21.8403	7.8134	527	277729	146363183	22.9565	8.0774
478	228484	109215352	21.8632	7.8188	528	278784	147197952	22.9783	8.0825
479	229441	109902239	21.8861	7.8243	529	279841	148035889	23.0000	8.0876
480	230400	110592000	21.9089	7.8297	530	280900	148877000	23.0217	8.0927
481	231361	111284641	21.9317	7.8352	531	281961	149721291	23.0434	8.0978
482	232324	111980168	21.9545	7.8406	532	283024	150568768	23.0651	8.1028
483	233289	112678587	21.9773	7.8460	533	284089	151419437	23.0868	8.1079
484	234256	113379904	22.0000	7.8514	534	285156	152273304	23.1084	8.1130
485	235225	114084125	22.0227	7.8568	535	286225	153130375	23.1301	8.1180
486	236196	114791256	22.0454	7.8622	536	287296	153990656	23.1517	8.1231
487	237169	115501303	22.0681	7.8676	537	288369	154854153	23.1733	8.1281
488	238144	116214272	22.0907	7.8730	538	289444	155720872	23.1948	8.1332
489	239121	116930169	22.1133	7.8784	539	290521	156590819	23.2164	8.1382
490	240100	177649000	22.1359	7.8837	540	291600	157464000	23.2379	8.1433

Table A-8. Squares, cubes, square roots, and cube roots (continued)

No.	Square	Cube	Square Root	Cube Root	No.	Square	Cube	Square Root	Cube Root
541	292681	138340421	23.2594	8.1483	591	349281	206425071	24.3105	8.3919
542	293764	149220088	23.2809	8.1533	592	350464	207474688	24.3311	8.3967
543	294849	160103007	23.3024	8.1583	593	351649	208527857	24.3516	8.4014
544	295936	160989184	23.3238	8.1633	594	352836	209584584	24.3721	8.4061
545	297025	161878625	23.3452	8.1683	595	354025	210644875	24.3926	8.4108
546	298116	162771336	23.3666	8.1733	596	355216	211708736	24.4131	8.4155
547	299209	163667323	23.3880	8.1783	597	356409	212776173	24.4336	8.4202
548	300304	164566592	23.4094	8.1833	598	357604	213847192	24.4540	8.4249
549	301401	165469149	23.4307	8.1882	599	358801	214921799	24.4745	8.4296
550	302500	166375000	23.4521	8.1932	600	360000	216000000	24.4949	8.4343
551	303601	167284151	23.4734	8.1982	601	361201	217081801	24.5153	8.4390
552	304704	168196608	23.4947	8.2031	602	362404	218167208	24.5357	8.4437
553	305809	169112377	23.5160	8.2081	603	363609	219256227	24.5561	8.4484
554	306916	170031464	23.5372	8.2130	604	364816	220348864	24.5764	8.4530
555	308025	170953875	23.5584	8.2180	605	366025	221445125	24.5967	8.4577
556	309136	171879616	23.5797	8.2229	606	367236	222545016	24.6171	8.4623
557	310249	172808693	23.6008	8.2278	607	368449	233648543	24.6374	8.4670
558	311364	173741112	23.6220	8.2327	608	369664	224755712	24.6577	8.4716
559	312481	174676879	23.6432	8.2377	609	370881	225866529	24.6779	8.4763
560	313600	175616000	23.6643	8.2426	610	372100	226981000	24.6982	8.4809
561	314721	176558481	23.6854	8.2475	611	373321	228099131	24.7184	8.4856
562	315844	177504328	23.7065	8.2524	612	374544	229220928	24.7386	8.4902
563	316969	178453547	23.7276	8.2573	613	375769	230346397	24.7588	8.4948
564	318096	179406144	23.7487	8.2621	614	376996	231475544	24.7790	8.4994
565	319225	180362125	23.7697	8.2670	615	378225	232608375	24.7992	8.5040
566	320356	181321496	23.7908	8.2719	616	379456	233744896	24.8193	8.5086
567	321489	182284263	23.8118	8.2768	617	380689	234885113	24.8395	8.5132
568	322624	183250432	23.8328	8.2816	618	381924	236029032	24.8596	8.5178
569	323761	184220009	23.8537	8.2865	619	383161	237176659	24.8797	8.5224
570	324900	185193000	23.8747	8.2913	620	384400	238328000	24.8998	8.5270
571	326041	186169411	23.8956	8.2962	621	385641	239483061	24.9199	8.5316
572	327184	187149248	23.9165	8.3010	622	386884	240641848	24.9399	8.5362
573	328329	188132517	23.9374	8.3059	623	388129	241804367	24.9600	8.5408
574	329476	189119224	23.9583	8.3107	624	389376	242970624	24.9800	8.5453
575	330625	190109375	23.9792	8.3155	625	390625	244140625	25.0000	8.5499
576	331776	191102976	24.0000	8.3203	626	391876	245314376	25.0200	8.5544
577	332929	192100033	24.0209	8.3251	627	393129	246491883	25.0400	8.5590
578	334084	193100552	24.0416	8.3300	628	394384	247673152	25.0599	8.5635
579	335241	194104539	24.0624	8.3348	629	395641	248858189	25.0799	8.5681
580	336400	195112000	24.0832	8.3396	630	396900	250047000	25.0998	8.5726
581	337561	196122941	24.1039	8.3443	613	398161	251239591	25.1197	8.5772
582	338724	197137368	24.1247	8.3491	632	399424	252435968	25.1396	8.5817
583	339889	198155287	24.1454	8.3539	633	400689	253636137	25.1595	8.5862
584	341056	199176704	24.1661	8.3587	634	401956	254840104	25.1794	8.5907
585	342225	200201625	24.1868	8.3634	635	403225	256047875	25.1992	8.5952
586	343396	201230056	24.2074	8.3682	636	404496	257259456	25.2190	8.5997
587	344569	202262003	24.2281	8.3730	637	405769	258474853	25.2389	8.6043
588	345744	203297472	24.2487	8.3777	638	407044	259694072	25.2587	8.6088
589	346921	204336469	24.2693	8.3825	639	408321	260917119	25.2784	8.6132
590	348100	205379000	24.2899	8.3872	640	409600	262144000	25.2982	8.6177

Table A-8. Squares, cubes, square roots, and cube roots (continued)

No.	Square	Cube	Square Root	Cube Root	No.	Square	Cube	Square Root	Cube Root
641	410881	263374721	25.3180	8.6222	691	477481	329939371	26.2869	8.8408
642	412164	264609288	25.3377	8.6267	692	478864	331373888	26.3059	8.8451
643	413449	265847707	25.3574	8.6312	693	490249	332812557	26.3249	8.8493
644	414736	267089984	25.3772	6.6357	694	481636	334255384	26.3439	8.8536
645	416025	268336125	25.3969	8.640 :	695	483025	335702375	26.3629	8.8578
646	417316	269586136	25.4165	8.6446	696	484416	337153536	26.3818	8.8621
647	418609	270840023	25.4362	8.6490	697	485809	338608873	26.4008	8.8663
648	419904	272097792	25.4558	8.6535	698	487204	340068392	26.4197	8.8706
649	421201	273359449	25.4755	8.6579	699	488601	341532099	26.4386	8.8748
650	422500	274625000	25.4951	8.6624	700	490000	343000000	26.4575	8.8790
651	423801	275894451	25.5147	8.6668	701	491401	344472101	26.4764	8.8833
652	425104	277167808	25.5343	8.6713	702	492804	345948408	26.4953	8.8875
653	426409	278445077	25.5539	8.6757	703	494209	347428927	26.5141	8.8917
654	427716	279726264	25.5734	8.6801	704	495616	348913664	26.5330	8.8959
655	429025	281011375	25.5930	8.6845	705	497025	350402625	26.5518	8.9001
656	430336	282300416	25.6125	8.6890	706	498436	351895816	26.5707	8.9043
657	431649	283593393	25.6320	8.6934	707	499849	353393243	26.5895	8.9085
658	432964	284890312	25.6515	8.6978	708	501264	354894912	26.6083	8.9127
659	434281	286191179	25.6710	8.7022	709	502681	356400829	26.6271	8.9169
660	435600	287496000	25.6905	8.7066	710	504100	357911000	26.6458	8.9211
661	436921	288804781	25.7099	8.7110	711	505521	359425431	26.6646	8.9253
662	438244	290117528	25.7294	8.7154	712	506944	360944128	26.6833	8.9295
663	439569	291434247	25.7488	8.7198	713	508369	362467097	26.7021	8.9337
664	440896	292754944	25.7682	8.7241	714	509796	363994344	26.7208	8.9378
665	442225	294079625	25.7876	8.7285	715	511225	365525875	26.7395	8.9420
666	443556	295408296	25.8070	8.7329	716	512656	367061696	26.7582	8.9462
667	444889	296740963	25.8263	8.7373	717	514089	368601813	26.7769	8.9503
668	446224	298077632	25.8457	8.7416	718	515524	370146232	26.7955	8.9545
669	447561	299418309	25.8650	8.7460	719	516961	371694959	26.8142	8.9587
670	448900	300763000	25.8844	8.7503	720	518400	373248000	26.8328	8.9628
671	450241	302111711	25.9037	8.7547	721	519841	374805361	26.8514	8.9670
672	451584	303464448	25.9230	8.7590	722	521284	376367048	26.8701	8.9711
673	452929	304821217	25.9422	8.7634	723	522729	377933067	26.8887	8.9752
674	454276	306182024	25.9615	8.7677	724	524176	379503424	26.9072	8.9794
675	455625	307546875	25.9808	8.7721	725	525625	381078125	26.9258	8.9835
676	456976	308915776	26.0000	8.7764	726	527076	382657176	26.9444	8.9876
677	458329	310288733	26.0192	8.7807	727	528529	384240583	26.9629	8.9918
678	459684	311665752	26.0384	8.7850	728	529984	385828352	26.9815	8.9959
679	461041	313046839	26.0576	8.7893	729	531441	387420489	27.0000	9.0000
680	462400	314432000	26.0768	8.7937	730	532900	389017000	27.0185	9.0041
681	463761	315821241	26.0960	8.7980	731	534361	390617891	27.0370	9.0082
682	465124	317214568	26.1151	8.8023	732	535824	392223168	27.0555	9.0123
683	466489	318611987	26.1343	8,8066	733	537289	393832837	27.0740	9.0164
684	467856	320013504	26.1543	8.8109	734	538756	395446904	27.0924	9.0205
685	469225	321419125	26.1725	8.8152	735	540225	397065375	27.1109	9.0246
686	470596	322828856	26.1916	8.8194	736	541696	398688256	27.1293	9.0287
687	471969	324242703	26.2107	8.8237	737	543169	400315553	27.1477	9.0328
688	473344	325660673	26.2298	8.8280	738	544644	401947272	27.1662	9.0369
689	474721	327083769	26.2488	8.8323	739	546121	403583419	27.1846	9.0410
690	476100	328509000	26.2679	8.8366	740	547600	405224000	27.2029	9.0450

Table A-8. Squares, cubes, square roots, and cube roots (continued)

No.	Square	Cube	Square Root	Cube Root	No.	Square	Cube	Square Root	Cube Root
741	549081	406869021	27.2213	9.0491	791	625681	494913671	28.1247	9.2482
742	550564	408518488	27.2397	9.0532	792	626264	496793088	28.1425	9.2521
743	552049	410172407	27.2580	9.0572	793	628849	498677257	28.1603	9.2560
744	553536	411830784	27.2764	9.0613	794	630436	500566184	28.1780	9.2599
745	555025	413493625	27.2947	9.0654	795	632025	502459875	28.1957	9.2638
746	556516	415160936	27.3130	9.0694	796	633616	504358836	28.2135	9.2677
747	558009	416832723	27.3313	9.0735	797	635209	506261573	28.2312	9.2716
748	559504	418508992	27.3496	9.0775	798	636804	508169592	28.2489	9.2754
749	561001	420189749	27.3679	9.0816	799	638401	510082399	28.2666	9.2793
750	562500	421875000	27.3861	9.0856	800	640000	512000000	28.2843	9.2832
751	564001	423564751	27.4044	9.0896	801	641601	513922401	28.3019	9.2870
752	565504	425259008	27.4226	9.0937	802	643204	515849608	28.3196	9.2909
753	567009	426957777	27.4408	9.0977	803	644809	517781627	28.3373	9.2948
754	568516	428661064	27.4591	9.1017	804	646416	519718464	28.3549	9.2986
755	570025	430368875	27.4773	9.1057	805	648025	521660125	28.3725	9.3025
756	571536	432081216	27.4955	9.1098	806	649636	523606616	28.3901	9.3063
757	573049	433798093	27.5136	9.1138	807	651249	525557943	28.4077	9.3102
758	574564	435519512	27.5318	9.1178	808	652864	527414112	28.4253	9.3140
759	576081	437245479	27.5500	9.1218	809	654481	529475129	28.4429	9.3179
760	577600	438976000	27.5681	9.1258	810	656100	531441000	28.4605	9.3217
761	579121	440711081	27.5862	9.1298	811	657721	533411731	28.4781	9.3255
762	580644	442450728	27.6043	9.1338	812	659344	535387328	28.4956	9.3294
763	582169	444194947	27.6225	9.1378	813	660969	537367797	28.5132	9.3332
764	583696	445943744	27.6405	9.1418	814	662596	539351344	28.5307	9.3370
765	585225	447697125	27.6586	9.1458	815	664225	541343375	28.5482	9.3408
766	586756	449455096	27.6767	9.1498	816	665856	543338496	28.5657	9.3447
767	588289	451217663	27.6948	9.1537	817	667489	545338513	28.5832	9.3485
768	589824	452984832	27.7128	9.1577	818	669124	547343432	28.6007	9.3523
769	591361	454756609	27.7308	9.1617	819	670761	549353259	28.6182	9.3561
770	592900	456533000	27.7489	9.1657	820	672400	551368000	28.6356	9.3599
771	594441	458314011	27.7669	9.1696	821	674041	553387661	28.6531	9.3637
772	595984	460099648	27.7849	9.1736	822	675684	555412248	28,6705	9.3675
773	597529	461889917	27.8029	9.1775	823	677329	557441767	28.6880	9.3713
774	599076	463684824	27.8209	9.1815	824	678976	559476224	28.7054	9.3751
775	600625	465484375	27.8388	9.1855	825	680625	561515625	28.7228	9.3789
776	602176	467288576	27.8568	9.1894	826	682276	563559976	28.7402	9.3827
777	603729	469097433	27.8747	9.1933	827	683929	565609283	28.7576	9.3865
778	605284	470910952	27.8927	9.1973	828	685584	567663552	28.7750	9.3902
779	606841	472729139	27.9106	9.2012	829	687241	569722789	28.7924	9.3940
780	608400	474552000	27.9285	9.2052	830	688900	571787000	28.8097	9.3978
781	609961	476379541	27.9464	9.2091	831	690561	573856191	28.8271	9.4016
782	611524	478211768	27.9643	9.2130	832	692224	575930368	28.8444	9.4053
783	613089	480048687	27.9821	9.2170	833	693889	578009537	28.8617	9.4091
784	614656	481890304	28.0000	9.2209	834	695556	580093704	28.8791	9.4129
785	616225	483736625	28.0179	9.2248	835	697225	582182875	28.8964	9.4166
876	617796	485587656	28.0357	9.2287	836	698896	584277056	28.9137	9.4204
787	619369	487443403	28.0535	9.2326	837	700569	586376253	28.9310	9.4241
788	620944	489303872	28.0713	9.2365	838	702244	588480472	28.9482	9.4279
789	622521	491169069	28.0891	9.2404	839	703921	590589719	28.9655	9.4316
790	624100	493039000	28.1069	9.2443	840	705600	592704000	28.9828	9.4354

Table A-8. Squares, cubes, square roots, and cube roots (continued)

No.	Square	Cube	Square Root	Cube Root	No.	Square	Cube	Square Root	Cube Root
841	707281	594823321	29.0000	9.4391	891	793881	707347971	29.8496	9.6226
842	708964	596947688	29.0172	9.4429	892	795664	709732288	29.8664	9.6262
843	710649	599077107	29.0345	9.4466	893	797449	712121957	29.8831	9.6298
844	712336	601211584	29.0517	9.4503	894	799236	714516984	29.8998	9.6334
845	714025	603351125	29.0689	9.4541	895	801025	716917375	29.9166	9.6370
846	715716	605495736	29.0861	9.4578	896	802816	719323136	29.9333	9.6406
847	717409	607645423	29.1033	9.4615	897	804609	721734273	29.9500	9.6442
848	719104	609800192	29.1204	9.4652	898	806404	724150792	29.9666	9.6477
849	720801	611960049	29.1376	9.4690	899	808201	726572699	29.9833	9.6513
850	722500	614125000	29.1548	9.4727	900	810000	729000000	30.0000	9.6549
851	724201	616295051	29.1719	9.4764	901	811801	731432701	30.0167	9.6585
852	725904	618470208	29.1890	9.4801	902	813604	733870808	30.0333	9.6620
853	727609	620650477	29.2062	9.4838	903	815409	736314327	30.0500	9.6656
854	729316	622835864	29.2233	9.4875	904	817216	738763264	30.0666	9.6692
855	731025	625026375	29.2204	9.4912	905	819025	741217625	30.0832	9.6727
856	732736	627222016	29.2575	9.4949	906	820836	743677416	30.0998	9.6763
857	734449	629422793	29.2746	9.4986	907	822649	746142643	30.1164	9.6799
858	736164	631628712	29.2916	9.5023	908	824464	748613312	30.1330	9.6834
859	737881	633839779	29.3087	9.5060	909	826281	751089429	30.1496	9.6870
860	739600	636056000	29.3258	9.5097	910	828100	753571000	30.1662	9.6905
861	741321	638277381	29.3428	9.5134	911	829921	756058031	30.1828	9.6941
862	743044	640503928	29.3598	9.5171	912	831744	758550528	30.1993	9.6976
863	744769	642735647	29.3769	9.5207	913	833569	761048497	30.2159	9.7012
864	746496	644972544	29.3339	9.5244	914	835396	763551944	30.2324	9.7047
865	748225	647214625	29.4109	9.5281	915	837225	766060875	30.2490	9.7082
866	749956	649461896	29.4279	9.5317	916	839056	768575296	30.2655	9.7118
867	751689	651714363	29.4449	9.5354	917	840889	771095213	30.2820	9.7153
868	753424	653972032	29.4618	9.5291	918	842724	773620632	30.2985	9.7188
869	755161	656234909	29.4788	9.5427	919	844561	776151559	30.3150	9.7224
870	756900	658503000	29.4958	9.5464	920	846400	778688000	30.3315	9.7259
871	758641	660776311	29.5127	9.5501	921	848241	781229961	30.3480	9.7294
872	760384	663054848	29.5296	9.5537	922	850084	783777448	30.3645	9.7329
873	762129	665338617	29.5466	9.5574	923	851929	786330467	30.3809	9.7364
874	763876	667627624	29.5635	9.5610	924	853776	788889024	30.3974	9.7400
875	765625	669921875	29.5804	9.5647	925	855625	791453125	30.4138	9.7435
876	767376	672221376	29.5973	9.5683	926	857476	794022776	30.4302	9.7470
877	769129	674526133	29.6142	9.5719	927	859329	796597983	30.4467	9.7505
878	770884	676836152	29.6311	9.5756	928	861184	799178752	30.4631	9.7540
879	772641	679151439	29.6479	9.5792	929	863041	801765089	30.4795	9.7575
880	774400	681472000	29.6648	9.5828	930	864900	804357000	30.4959	9.7610
881	776161	683797841	29.6816	9.5865	931	866761	806954491	30.5123	9.7645
882	777924	686128968	29.6985	9.5901	932	868624	809557568	30.5287	9.7680
883	779689	688465387	29.7153	9.5937	933	870489	812166237	30.5450	9.7715
884	781456	690807104	29.7321	9.5973	934	872356	841780504	30.5614	9.7750
885	783225	693154125	29.7489	9.6010	935	874225	817400375	30.5778	9.7785
886	784996	695506456	29.7658	9.6046	936	876096	820025856	30.5941	9.7819
887	786769	697864103	29.7825	9.6082	937	877969	822656953	30.6105	9.7854
888	788544	700227072	29.7993	9.6118	938	879844	825293672	30.6268	9.7889
889	790321	702595369	29.8161	9.6154	939	881721	827936019	30.6431	9.7924
890	792100	704969000	29.8329	9.6190	940	883600	830584000	30.6594	9.7959

Table A-8. Squares, cubes, square roots, and cube roots (continued)

No.	Square	Cube	Square Root	Cube Root	No.	Square	Cube	Square Root	Cube Root
941	885481	833237621	30.6757	9.7993	971	942841	915498611	31.1609	9.9024
942	887364	835896888	30.6920	9.8028	972	944784	918330048	31.1769	9.9058
943	889249	838561807	30.7083	9.8063	973	946729	921167317	31.1929	9.9092
944	891136	841232384	30.7246	9.8097	974	948676	924010424	31.2090	9.9126
945	893025	843908625	30.7409	9.8132	975	950625	926859375	31.2250	9.9160
946	894916	846590536	30.7571	9.8167	976	952576	929714176	31.2410	9.9194
947	896809	849278123	30.7734	9.8201	977	954529	932574833	31.2570	9.9227
948	898704	851971392	30.7896	9.8236	978	956484	935441352	31.2730	0.9261
949	900601	854670349	30.8058	9.8270	979	958441	938313739	31.2890	9.9295
950	902500	857375000	30.8221	9.8305	980	960400	941192000	31.3050	9.9329
951	904401	860085351	30.8383	9.8339	981	962361	944076141	31.3209	9.9363
952	906304	862801408	30.8545	9.8374	982	964324	946966168	31.3369	9.9396
953	908209	865523177	30.8707	9.8408	983	966289	949862087	31.3528	9.9430
954	910116	868250664	30.8869	9.8443	984	968256	952763904	31.3688	9.9464
955	912025	870983875	30.9031	9.8477	985	970225	955671625	31.3847	9.9497
956	913936	873722816	30.9192	9.8511	986	972196	958585256	31.4006	9.9531
957	915849	876467493	30.9354	9.8546	987	974169	961504803	31.4166	9.9565
958	917764	879217912	30.9516	9.8580	988	976144	964439272	31.4325	9.9598
959	919681	881974079	30.9677	9.8614	989	978121	967361669	31.4484	9.9632
960	921600	884736000	30.9839	9.8648	990	980100	970299000	31.4643	9.9666
961	923521	887503681	31.0000	9.8683	991	982081	973242271	31.4802	9.9699
962	925444	890277128	31.0161	9.8717	992	984064	976191488	31.4960	9.9733
963	927369	893056347	31.0332	9.8751	993	986049	979146657	31.5119	9.9766
964	929296	895841344	31.0483	9.8785	994	988036	982107784	31.5278	9.9800
965	931225	898632125	31.0644	9.8819	995	990025	985074875	31.5436	9.9833
966	933156	901428696	31.0805	9.8854	996	992016	988047936	31.5595	9.9866
967	935089	904231063	31.0966	9.8888	997	994009	991026973	31.5753	9.9900
968	937024	907039232	31.1127	9.8922	998	996004	994011992	31.5911	9.9933
969	938961	909853209	31.1288	9.8956	999	998001	997002999	31.6070	9.9967
970	940900	912673000	31.1448	9.8990	1000	1000000	1000000000	31.6228	10.0000

Table A-9. Functions of the $\mathbf{1 0}$-chord spiral
(To use table, locate the angle in the left column.)
The valve for angle A is in the second column.
To compute the value of C, X or Y, multiply the appropriate value times the length of the spiral $\left(\mathrm{L}_{\mathbf{s}}\right)$.

Table A-9. Functions of the $\mathbf{1 0}$-chord spiral (continued)

Δ	A	$\frac{\mathrm{C}}{\mathrm{~L} .}$	$\frac{\mathrm{X}}{\mathrm{L}}$	$\frac{\mathbf{Y}}{\mathbf{L}}$	Δ	A	$\frac{\mathrm{C}}{\mathrm{L} .}$	$\frac{\mathrm{X}}{\mathrm{L}}$	$\frac{\mathrm{Y}}{\mathrm{L}}$.
0.0°	$0^{\circ} 00^{\prime} 00^{\prime \prime}$	1.000000	1.000000	0.000000	5.0°	$1^{\circ} 40^{\prime} 00^{\prime \prime}$. 999666	. 999243	. 029073
$0.1{ }^{\circ}$	$0^{\circ} 02^{\prime} 00^{\prime \prime}$	1.000000	1.000000	. 000582	$5.1{ }^{\circ}$	$1^{\circ} 42^{\prime} 00^{\prime \prime}$. 999652	. 999212	. 029654
02°	$0^{\circ} 04^{\prime} 00^{\prime \prime}$. 999999	. 999999	. 001164	5.2°	$1^{\circ} 44^{\prime} 00^{\prime \prime}$	999639	. 999181	. 030235
$0.3{ }^{\circ}$	$0^{\circ} 06^{\prime} 00^{\prime \prime}$. 999999	. 999997	. 001745	$5.3{ }^{\circ}$	$1^{\circ} 46^{\prime} 00^{\prime \prime}$	999625	. 999149	. 030816
$0.4{ }^{\circ}$	$0^{\circ} 08^{\prime} 00^{\prime \prime}$. 999998	999995	. 002327	$5.4{ }^{\circ}$	$1^{\circ} 48^{\prime} 00^{\prime \prime}$. 999610	. 999117	. 031396
$0.5{ }^{\circ}$	$0^{\circ} 10^{\prime} 00^{\prime \prime}$. 999997	. 999993	. 002909	$5.5{ }^{\circ}$	$1^{\circ} 50^{\prime} 00^{\prime \prime}$. 999596	. 999084	. 031977
$0.6{ }^{\circ}$	$0^{\circ} 12^{\prime} 00^{\prime \prime}$. 999995	. 999989	. 003491	$5.6{ }^{\circ}$	$1^{\circ} 51^{\prime} 59^{\prime \prime}$	999581	. 999051	. 032558
$0.7{ }^{\circ}$	$0^{\circ} 14^{\prime} 00^{\prime \prime}$. 999993	. 999985	. 004072	$5.7{ }^{\circ}$	$1^{\circ} 53^{\prime} 59^{\prime \prime}$. 999566	. 999016	. 033138
$0.8{ }^{\circ}$	$0^{\circ} 16^{\prime} 00^{\prime \prime}$. 999991	. 999981	. 004654	$5.8{ }^{\circ}$	$1^{\circ} 55^{\prime} 59^{\prime \prime}$. 999550	. 998982	. 033719
$0.9{ }^{\circ}$	$0^{\circ} 18^{\prime} 00^{\prime \prime}$. 999989	. 999975	. 005236	$5.9{ }^{\circ}$	$1^{\circ} 57^{\prime \prime} 59^{\prime \prime}$. 999535	. 998946	. 034299
1.0°	$0^{\circ} 20^{\prime} 00^{\prime \prime}$. 999987	. 999970	. 005818	6.0°	$1^{\circ} 59^{\prime} 59^{\prime \prime}$. 999519	. 998910	. 034880
$1.1{ }^{\circ}$	$0^{\circ} 22^{\prime} 00^{\prime \prime}$. 999984	. 999963	. 006399	$6.1{ }^{\circ}$	$2^{\circ} 01^{\prime} 59^{\prime \prime}$. 999503	. 998873	. 035460
$1.2{ }^{\circ}$	$0^{\circ} 24^{\prime} 00^{\prime \prime}$. 999981	. 999956	. 006981	$6.2{ }^{\circ}$	$2^{\circ} 03^{\prime} 59^{\prime \prime}$. 999486	. 998836	. 036040
$1.3{ }^{\circ}$	$0^{\circ} 26^{\prime} 00^{\prime \prime}$. 999977	. 999949	. 007563	$6.3{ }^{\circ}$	$2^{\circ} 05^{\prime} 59^{\prime \prime}$. 999470	. 998799	. 036621
$1.4{ }^{\circ}$	$0^{\circ} 28^{\prime} 00^{\prime \prime}$	999974	. 999941	. 008145	$6.4{ }^{\circ}$	$2^{\circ} 07^{\prime} 59{ }^{\prime \prime}$. 999453	. 998760	. 037201
$1.5{ }^{\circ}$	$0^{\circ} 30^{\prime} 00^{\prime \prime}$. 999970	. 999932	. 008726	$6.5{ }^{\circ}$	$2^{\circ} 09^{\prime} 59^{\prime \prime}$. 999435	. 998721	. 037781
$1.6{ }^{\circ}$	$0^{\circ} 32^{\prime} 00^{\prime \prime}$. 999966	. 999923	. 009308	$6.6{ }^{\circ}$	$2^{\circ} 11^{\prime} 59{ }^{\prime \prime}$. 999418	. 998681	. 038361
$1.7{ }^{\circ}$	$0^{\circ} 34^{\prime} 00^{\prime \prime}$. 999961	. 999913	. 009890	6.7°	$2^{\circ} 13^{\prime} 59^{\prime \prime}$. 999400	. 998641	. 038941
$1.8{ }^{\circ}$	$0^{\circ} 36^{\prime} 00^{\prime \prime}$. 999957	. 999902	. 010471	$6.8{ }^{\circ}$	$2^{\circ} 15^{\prime} 59^{\prime \prime}$. 999382	. 998600	. 039522
$1.9{ }^{\circ}$	$0^{\circ} 38^{\prime} 00^{\prime \prime}$. 999952	. 999891	.011053	$6.9{ }^{\circ}$	$2^{\circ} 17^{\prime} 59^{\prime \prime}$. 999364	. 998559	. 040102
2.0°	$0^{\circ} 40^{\prime} 00^{\prime \prime}$. 999947	. 999879	.011635	7.0°	$2^{\circ} 19^{\prime} 59 \prime$. 999345	. 998517	.040681
$2.1{ }^{\circ}$	$0^{\circ} 42^{\prime} 00^{\prime \prime}$. 999941	. 999867	. 012216	7.1°	2° 21'59"	. 999326	. 998474	. 041261
$2.2{ }^{\circ}$	$0^{\circ} 44^{\prime} 00^{\prime \prime}$. 999935	. 999853	. 012798	7.2°	2° 23' 59"	. 999307	. 998431	. 041841
$2.3{ }^{\circ}$	$0^{\circ} 46^{\prime} 00^{\prime \prime}$. 999930	. 999840	. 013379	7.3°	$2^{\circ} 25^{\prime} 59^{\prime \prime}$. 999288	. 998387	. 042421
$2.4{ }^{\circ}$	$0^{\circ} 48^{\prime} 00^{\prime \prime}$. 999923	. 999826	. 013961	$7.4{ }^{\circ}$	$2^{\circ} 27^{\prime} 59{ }^{\prime \prime}$. 999268	. 998343	. 043001
$2.5{ }^{\circ}$	$0^{\circ} 50^{\prime} 00^{\prime \prime}$. 999916	. 999811	. 014542	7.5°	$2^{\circ} 29^{\prime} 59^{\prime \prime}$. 999248	. 998298	. 043581
$2.6{ }^{\circ}$	$0^{\circ} 52^{\prime} 00{ }^{\prime \prime}$. 999910	. 999795	. 015124	7.6°	$2^{\circ} 31{ }^{\prime} 59 \prime$. 999228	. 998252	. 044160
$2.7{ }^{\circ}$	$0^{\circ} 54^{\prime} 00^{\prime \prime}$. 999903	. 999779	. 015706	7.7°	$2^{\circ} 33^{\prime} 59^{\prime \prime}$. 999208	. 998206	. 044740
$2.8{ }^{\circ}$	$0^{\circ} 56^{\prime} 00^{\prime \prime}$. 999895	. 999763	. 016287	$7.8{ }^{\circ}$	$2^{\circ} 35{ }^{\prime} 59$. 999187	. 998159	. 045319
$2.9{ }^{\circ}$	$0^{\circ} 58^{\prime} 00^{\prime \prime}$. 999888	. 999745	. 016868	$7.9{ }^{\circ}$	$2^{\circ} 37{ }^{\prime} 59^{\prime \prime}$. 999166	. 998111	. 045899
3.0°	$1^{\circ} 00^{\prime} 00^{\prime \prime}$. 999880	. 999727	. 017450	8.0°	$2^{\circ} 39^{\prime} 58^{\prime \prime}$. 999145	. 998063	. 046478
$3.1{ }^{\circ}$	$1^{\circ} 02^{\prime} 00^{\prime \prime}$. 999872	. 999709	. 018031	8.1°	$2^{\circ} 41{ }^{\prime \prime} 58^{\prime \prime}$. 999123	. 998015	. 047058
$3.2{ }^{\circ}$	$1^{\circ} 04^{\prime} 00^{\prime \prime}$. 999863	. 999690	. 018613	$8.2{ }^{\circ}$	$2^{\circ} 43^{\prime} 58^{\prime \prime}$. 999102	. 997965	. 047637
$3.3{ }^{\circ}$	$1^{\circ} 06^{\prime} 00^{\prime \prime}$. 999854	. 999670	. 019194	$8.3{ }^{\circ}$	$2^{\circ} 45^{\prime} 58{ }^{\prime \prime}$. 999080	. 997916	. 048216
$3.4{ }^{\circ}$	$1^{\circ} 08^{\prime} 00^{\prime \prime}$. 999845	. 999650	. 019776	$8.4{ }^{\circ}$	$2^{\circ} 47^{\prime} 58^{\prime \prime}$. 999057	. 997865	. 048795
$3.5{ }^{\circ}$	$1^{\circ} 10^{\prime} 00^{\prime \prime}$	999836	. 999629	. 020357	$8.5{ }^{\circ}$	$2^{\circ} 499^{\prime \prime}$. 999035	. 997814	. 049374
$3.6{ }^{\circ}$	$1^{\circ} 12^{\prime} 00^{\prime \prime}$. 999827	. 999607	. 020938	$8.6{ }^{\circ}$	$2^{\circ} 51 \prime 58^{\prime \prime}$. 999012	. 997762	. 049953
3.7°	$1^{\circ} 14^{\prime} 00^{\prime \prime}$. 999817	. 999585	. 021519	8.7°	$2^{\circ} 53^{\prime} 58^{\prime \prime}$. 998989	. 997710	. 050532
$3.8{ }^{\circ}$	$1^{\circ} 16^{\prime} 00^{\prime \prime}$. 999807	. 999563	. 022101	$8.8{ }^{\circ}$	$2^{\circ} 55^{\prime} 58^{\prime \prime}$. 998965	. 997657	. 051111
$3.9{ }^{\circ}$	$1^{\circ} 18^{\prime} 00^{\prime \prime}$. 999797	. 999539	. 022682	$8.9{ }^{\circ}$	$2^{\circ} 57{ }^{\prime \prime}$. 998942	. 997603	. 051690
4.0°	$1^{\circ} 20^{\prime} 00^{\prime \prime}$. 999786	. 999515	. 023263	9.0°	$2^{\circ} 59^{\prime} 58^{\prime \prime}$. 998918	. 997549	. 052269
4.1°	$1^{\circ} 22^{\prime} 00^{\prime \prime}$. 999775	. 999491	. 023844	$9.1{ }^{\circ}$	$3^{\circ} 01{ }^{\prime \prime} 58^{\prime \prime}$. 998894	. 997494	. 052848
$4.2{ }^{\circ}$	$1^{\circ} 24^{\prime} 00^{\prime \prime}$. 999764	. 999466	. 024425	$9.2{ }^{\circ}$	$3^{\circ} 03^{\prime} 58{ }^{\prime \prime}$. 998869	. 997439	. 053426
$4.3{ }^{\circ}$	$1^{\circ} 26^{\prime} 00^{\prime \prime}$. 999753	. 999440	. 025006	$9.3{ }^{\circ}$	$3^{\circ} 05^{\prime} 58^{\prime \prime}$. 998844	. 997383	. 054005
$4.4{ }^{\circ}$	$1^{\circ} 28^{\prime} 00^{\prime \prime}$. 999741	. 999414	. 025588	$9.4{ }^{\circ}$	$3^{\circ} 07^{\prime} 58{ }^{\prime \prime}$. 998819	. 997327	. 054583
$4.5{ }^{\circ}$	$1^{\circ} 30^{\prime} 00^{\prime \prime}$. 999729	. 999387	. 026169	$9.5{ }^{\circ}$	$3^{\circ} 09^{\prime} 57^{\prime \prime}$. 998794	. 997270	. 055162
$4.6{ }^{\circ}$	$1^{\circ} 32^{\prime} 00^{\prime \prime}$. 999717	. 999359	. 026750	$9.6{ }^{\circ}$	$3^{\circ} 11.57^{\prime \prime}$. 998769	. 997212	. 055740
$4.7{ }^{\circ}$	$1^{\circ} 34^{\prime} 00^{\prime \prime}$. 999705	. 999331	. 027330	$9.7{ }^{\circ}$	$3^{\circ} 13^{\prime} 57^{\prime \prime}$. 998743	. 997154	. 056318
$4.8{ }^{\circ}$	$1^{\circ} 36{ }^{\prime} 00^{\prime \prime}$. 999692	. 999302	. 027911	$9.8{ }^{\circ}$	$3^{\circ} 15$ ' 57"	. 998717	. 997095	. 056897
$4.9{ }^{\circ}$	$1^{\circ} 38^{\prime} 00^{\prime \prime}$.999679	. 999273	. 028492	$9.9{ }^{\circ}$	$3^{\circ} 17^{\prime} 57^{\prime \prime}$. 998691	. 997035	. 057475

Table A-9. Functions of the 10-chord spiral (continued)

Δ	A	C	X	\underline{Y}	Δ	A	c	X	Y
		L.	L.	L.			L.	L.	L.
10.0°	$3^{\circ} 19^{\prime} 57^{\prime \prime}$. 998664	. 396975	. 058053	15.0°	$4^{\circ} 59^{\prime} 50^{\prime \prime}$	996996	. 993206	. 086846
$10.1{ }^{\circ}$	$3^{\circ} 21^{\prime} 57^{\prime \prime}$. 998637	. 996915	. 058631	15.1°	$5^{\circ} 01^{\prime} 50^{\prime \prime}$. 996956	. 993115	. 087419
10.2°	$3^{\circ} 23^{\prime} 57 \prime \prime$. 998610	. 996853	. 059209	15.2°	$5^{\circ} 03^{\prime} 50 \prime$. 996915	. 993024	. 087992
$10.3{ }^{\circ}$	$3^{\circ} 25^{\prime} 57^{\prime \prime}$. 998583	. 996791	. 059787	15.3°	$5^{\circ} 05^{\prime} 49 \prime$. 996874	992932	088565
$10.4{ }^{\circ}$	$3^{\circ} 27^{\prime} 57 \prime \prime$. 998555	996729	. 060364	$15.4{ }^{\circ}$	$5^{\circ} 07^{\prime} 49^{\prime \prime}$	996833	992840	. 089138
$10.5{ }^{\circ}$	$3^{\circ} 29^{\prime} 57^{\prime \prime}$. 998527	. 996666	. 060942	$15.5{ }^{\circ}$	$5^{\circ} 09^{\prime} 49^{\prime \prime}$. 996792	. 992747	. 089711
$10.6{ }^{\circ}$	$3^{\circ} 31^{\prime} 56^{\prime \prime}$. 998499	996602	. 061520	$15.6{ }^{\circ}$	$5^{\circ} 11^{\prime} 49^{\prime \prime}$. 996751	992653	. 090284
10.7°	$3^{\circ} 33^{\prime} 56{ }^{\prime \prime}$. 998471	996538	. 062097	$15.7{ }^{\circ}$	$5^{\circ} 13^{\prime} 49^{\prime \prime}$. 996709	. 092559	090857
$10.8{ }^{\circ}$	$3^{\circ} 35^{\prime} 56^{\prime \prime}$. 998442	. 996473	. 062675	15.8°	$5^{\circ} 15^{\prime} 48^{\prime \prime}$. 996667	. 992465	. 091429
$10.9{ }^{\circ}$	$3^{\circ} 37^{\prime} 56 "$. 998413	. 996407	. 063252	$15.9{ }^{\circ}$	$5^{\circ} 17^{\prime} 48^{\prime \prime}$. 996625	. 992369	. 092001
11.0°	$3^{\circ} 39^{\prime} 56^{\prime \prime}$. 998384	996341	0.063829	16.0°	$5^{\circ} 19^{\prime} 48^{\prime \prime}$. 996582	. 992273	092574
$11.1{ }^{\circ}$	$3^{\circ} 41^{\prime} 56^{\prime \prime}$. 998354	. 996274	. 064406	16.1°	$5^{\circ} 21.48 "$. 996539	. 992177	093146
11.2°	$3^{\circ} 43^{\prime} 56^{\prime \prime}$. 998324	. 996207	. 064984	16.2°	$5^{\circ} 23^{\prime} 47^{\prime \prime}$. 996496	. 992080	. 093718
11.3°	$3^{\circ} 45^{\prime} 56^{\prime \prime}$.998 294	996139	. 065561	16.3°	$5^{\circ} 25^{\prime} 47^{\prime \prime}$. 996453	. 991982	. 094290
$11.4{ }^{\circ}$	$3^{\circ} 47{ }^{\prime \prime} 56^{\prime \prime}$. 998264	. 996071	. 066138	$16.4{ }^{\circ}$	$5^{\circ} 27^{\prime} 47^{\prime \prime}$. 996409	. 991884	. 094862
$11.5{ }^{\circ}$	$3^{\circ} 49^{\prime} 55^{\prime \prime}$. 998233	. 996002	. 066714	16.5°	$5^{\circ} 29^{\prime} 47^{\prime \prime}$. 996366	. 991785	. 095433
$11.6{ }^{\circ}$	$3^{\circ} 51^{\prime} 55^{\prime \prime}$. 998203	. 995932	. 067291	$16.6{ }^{\circ}$	$5^{\circ} 31^{\prime} 46^{\prime \prime}$. 996321	. 991685	. 090005
11.7°	$3^{\circ} 53^{\prime} 55^{\prime \prime}$. 998172	. 995862	. 067868	16.7°	$5^{\circ} 33^{\prime} 46^{\prime \prime}$. 996277	. 991585	. 096576
11.8°	$3^{\circ} 55^{\prime} 55^{\prime \prime}$. 998140	. 995791	. 068445	$16.8{ }^{\circ}$	$5^{\circ} 35^{\prime} 46^{\prime \prime}$. 996232	. 991484	. 097148
11.9°	$3^{\circ} 57^{\prime} 55^{\prime \prime}$. 998109	. 995719	. 069021	$16.9{ }^{\circ}$	$5^{\circ} 37^{\prime} 46^{\prime \prime}$. 996187	. 991383	. 097719
12.0°	$3^{\circ} 59^{\prime} 55^{\prime \prime}$. 998077	. 995647	. 069598	17.0°	$5^{\circ} 39^{\prime} 45^{\prime \prime}$. 996142	. 991281	. 098290
$12.1{ }^{\circ}$	$4^{\circ} 01^{\prime} 55^{\prime \prime}$. 998044	. 995574	. 070174	17.1°	$5^{\circ} 41^{\prime} 45^{\prime \prime}$. 996097	. 991179	. 098861
$12.2{ }^{\circ}$	$4^{\circ} 03^{\prime} 55^{\prime \prime}$. 998012	. 995501	. 070750	17.2°	$5^{\circ} 43^{\prime} 45^{\prime \prime}$. 996051	. 991076	. 099432
$12.3{ }^{\circ}$	$4^{\circ} 05^{\prime} 54^{\prime \prime}$. 997979	. 995427	. 071326	$17.3{ }^{\circ}$	$5^{\circ} 45^{\prime} 45^{\prime \prime}$. 996005	. 990972	. 100002
$12.4{ }^{\circ}$	$4^{\circ} 07^{\prime} 54{ }^{\prime \prime}$. 997946	995353	. 071902	$17.4{ }^{\circ}$	$5^{\circ} 47^{\prime} 44^{\prime \prime}$. 995959	. 990868	. 100573
$12.5{ }^{\circ}$	$4^{\circ} 09^{\prime} 54^{\prime \prime}$. 997913	. 995278	. 072478	17.5°	$5^{\circ} 49^{\prime} 44^{\prime \prime}$. 995912	. 990763	. 101143
$12.6{ }^{\circ}$	$4^{\circ} 11^{\prime} 54^{\prime \prime}$. 997880	. 995202	. 073054	17.6°	$5^{\circ} 51^{\prime} 44^{\prime \prime}$. 995865	. 990657	. 101713
$12.7{ }^{\circ}$	$4^{\circ} 13^{\prime} 54^{\prime \prime}$. 997846	. 995126	. 073630	$17.7{ }^{\circ}$	$5^{\circ} 53^{\prime} 44^{\prime \prime}$. 995818	. 990551	. 102284
$12.8{ }^{\circ}$	$4^{\circ} 15^{\prime} 54^{\prime \prime}$. 997812	. 995049	. 074206	$17.8{ }^{\circ}$	$5^{\circ} 55^{\prime} 43^{\prime \prime}$. 995771	. 990445	. 102854
$12.9{ }^{\circ}$	$4^{\circ} 17^{\prime} 54^{\prime \prime}$. 997777	. 994971	. 074781	17.9°	$5^{\circ} 57^{\prime} 43^{\prime \prime}$. 995723	. 990338	. 103424
$13.0{ }^{\circ}$	$4^{\circ} 19^{\prime} 53^{\prime \prime}$. 997743	. 994893	. 075357	18.0°	$5^{\circ} 59^{\prime} 43^{\prime \prime}$. 995676	. 990230	. 103993
$13.1{ }^{\circ}$	$4^{\circ} 21^{\prime \prime} 53^{\prime \prime}$. 997708	. 994814	. 075932	18.1°	$6^{\circ} 01^{\prime} 42^{\prime \prime}$. 995627	. 990122	. 104563
$13.2{ }^{\circ}$	$4^{\circ} 23^{\prime} 53^{\prime \prime}$. 997673	. 994735	. 076508	18.2°	$6^{\circ} 03^{\prime} 42^{\prime \prime}$. 995579	. 990013	. 105132
$13.3{ }^{\circ}$	$4^{\circ} 25^{\prime} 53^{\prime \prime}$. 997638	. 994655	. 077083	18.3°	$6^{\circ} 05^{\prime} 42^{\prime \prime}$. 995530	. 989903	. 105702
$13.4{ }^{\circ}$	$4^{\circ} 27^{\prime} 53^{\prime \prime}$. 997602	. 994575	. 077658	$18.4{ }^{\circ}$	$6^{\circ} 07^{\prime} 42^{\prime \prime}$. 995482	. 989793	. 106271
$13.5{ }^{\circ}$	$4^{\circ} 29^{\prime} 53^{\prime \prime}$. 997566	. 994494	. 078233	18.5°	$6^{\circ} 09^{\prime} 41^{\prime \prime}$. 995432	. 989682	. 106840
$13.6{ }^{\circ}$	$4^{\circ} 31^{\prime} 53^{\prime \prime}$. 997530	. 994412	. 078808	$18.6{ }^{\circ}$	$6^{\circ} 11^{\prime} 41^{\prime \prime}$. 995383	. 989571	. 107409
$13.7{ }^{\circ}$	$4^{\circ} 33^{\prime} 52^{\prime \prime}$. 997493	. 994330	. 079383	18.7°	$6^{\circ} 13^{\prime} 41^{\prime \prime}$. 995333	. 989459	. 107978
$13.8{ }^{\circ}$	$4^{\circ} 35^{\prime} 52^{\prime \prime}$. 997457	. 994247	. 079957	$18.8{ }^{\circ}$	$6^{\circ} 15^{\prime} 40^{\prime \prime}$. 995283	. 989346	. 108547
$13.9{ }^{\circ}$	$4^{\circ} 37^{\prime} 52^{\prime \prime}$. 997420	. 994163	. 080532	18.9°	$6^{\circ} 17^{\prime} 40^{\prime \prime}$. 995233	. 989233	. 109115
$14.0{ }^{\circ}$	$4^{\circ} 39^{\prime \prime} 52^{\prime \prime}$. 997383	. 994079	. ${ }^{\text {a }} 1106$	$19.0{ }^{\circ}$	$6^{\circ} 19^{\prime} 40^{\prime \prime}$. 995183	. 989120	.109683
$14.1{ }^{\circ}$	$4^{\circ} 41^{\prime} 52^{\prime \prime}$. 997345	. 993995	. 081681	$19.1{ }^{\circ}$	$6^{\circ} 21^{\prime} 39^{\prime \prime}$. 995132	. 989005	. 110252
$14.2{ }^{\circ}$	$4^{\circ} 43^{\prime} 51^{\prime \prime}$. 997307	. 993909	. 082255	19.2°	$6^{\circ} 23^{\prime} 39^{\prime \prime}$. 995081	. 988891	. 110820
$14.3{ }^{\circ}$	$4^{\circ} 45^{\prime} 51^{\prime \prime}$. 997269	. 993823	. 082829	$19.3{ }^{\circ}$	$6^{\circ} 25^{\prime} 39^{\prime \prime}$. 995029	. 988775	. 111388
$14.4{ }^{\circ}$	$4^{\circ} 47^{\prime} 51^{\prime \prime}$. 997231	. 993737	. 083403	$19.4{ }^{\circ}$	$6^{\circ} 27^{\prime} 38^{\prime \prime}$. 994978	. 988659	. 111956
$14.5{ }^{\circ}$	$4^{\circ} 49^{\prime} 51^{\prime \prime}$. 997192	. 993650	. 083977	$19.5{ }^{\circ}$	$6^{\circ} 29^{\prime} 38^{\prime \prime}$. 994926	. 988543	. 112523
$14.6{ }^{\circ}$	$4^{\circ} 51^{\prime} 51^{\prime \prime}$. 997154	. 993562	. 084551	$19.6{ }^{\circ}$	$6^{\circ} 31^{\prime} 38^{\prime \prime}$. 994874	. 988425	. 113091
$14.7{ }^{\circ}$	$4^{\circ} 53^{\prime} 51^{\prime \prime}$. 997115	. 993474	. 085125	19.7°	$6^{\circ} 33^{\prime} 37^{\prime \prime}$. 994822	.98t3 308	. 113658
$14.8{ }^{\circ}$	$4^{\circ} 55^{\prime} 50^{\prime \prime}$. 997075	. 993385	. 085699	$19.8{ }^{\circ}$	$6^{\circ} 35^{\prime} 37 \prime \prime$. 994769	. 988189	. 114226
$14.9{ }^{\circ}$	$4^{\circ} 57^{\prime} 50^{\prime \prime}$. 997036	. 993296	. 086272	$19.9{ }^{\circ}$	$6^{\circ} 37^{\prime} 37 \prime$. 994716	. 988070	. 114793

Table A-9. Functions of the 10-chord spiral (continued)

Δ	A	C	\underline{X}	Y	Δ	A	C	X	Y
		L.	1	L.			L.	L.	L.
$20.0{ }^{\circ}$	$6^{\circ} 39^{\prime} 36^{\prime \prime}$. 994663	. 987951	. 115360	$24.9{ }^{\circ}$	$8^{\circ} 17^{\prime} 14^{\prime \prime}$. 991735	. 981380	. 142945
$20.1{ }^{\circ}$	$6^{\circ} 41^{\prime} 36^{\prime \prime}$. 994610	. 987830	. 115926	25.0°	$8^{\circ} 19^{\prime} 14^{\prime \prime}$.991669	.981231	. 143504
20.2°	$6^{\circ} 43^{\prime} 36^{\prime \prime}$. 994556	. 987710	. 116493					
$20.3{ }^{\circ}$	$6^{\circ} 45^{\prime} 35^{\prime \prime}$. 994502	. 987589	. 117059	$25.1{ }^{\circ}$	$8^{\circ} 21^{\prime} 13^{\prime \prime}$. 991602	. 981082	. 144062
$20.4{ }^{\circ}$	$6^{\circ} 47^{\prime} 35^{\prime \prime}$. 994448	. 987467	. 117626	$25.2{ }^{\circ}$	$8^{\circ} 23^{\prime} 12^{\prime \prime}$. 991536	. 980932	. 144620
$20.5{ }^{\circ}$	$6^{\circ} 49{ }^{\prime} 34^{\prime \prime}$. 994393	. 987344	. 118192	$25.3{ }^{\circ}$	$8^{\circ} 25^{\prime} 12^{\prime \prime}$	991468	. 980782	. 145179
$20.6{ }^{\circ}$	$6^{\circ} 51 \prime 34^{\prime \prime}$. 994339	. 987221	. 118758	$25.4{ }^{\circ}$	$8^{\circ} 27^{\prime} 11^{\prime \prime}$	991401	. 980631	. 145737
$20.7{ }^{\circ}$	$6^{\circ} 53^{\prime} 34^{\prime \prime}$. 994284	. 987097	. 119324	$25.5{ }^{\circ}$	$8^{\circ} 29^{\prime} 11{ }^{\prime \prime}$	991333	. 980479	. 146294
$20.8{ }^{\circ}$	$6^{\circ} 55^{\prime} 33^{\prime \prime}$. 994228	. 986973	. 119890	$25.6{ }^{\circ}$	$8^{\circ} 31^{\prime} 10^{\prime \prime}$	991265	. 980327	. 146852
$20.9{ }^{\circ}$	$6^{\circ} 57^{\prime} 33^{\prime \prime}$. 994173	. 986849	. 120455	$25.7{ }^{\circ}$	$8^{\circ} 33{ }^{\circ} 10^{\prime \prime}$. 991197	. 980175	. 147409
					$25.8{ }^{\circ}$	$8^{\circ} 35^{\prime} 09^{\prime \prime}$. 991129	. 980022	. 147966
21.0°	$6^{\circ} 59{ }^{\prime \prime} 3{ }^{\prime \prime}$. 994117	. 986723	.121021	$25.9{ }^{\circ}$	$8^{\circ} 37{ }^{\prime} 0{ }^{\prime \prime}$. 991060	. 979868	. 148523
21.1°	$7^{\circ} 01^{\prime \prime} 32^{\prime \prime}$. 994061	. 986597	. 121586	26.0°	$8^{\circ} 39^{\prime} 08^{\prime \prime}$	990991	. 979714	. 149080
21.2°	$7^{\circ} 03^{\prime} 32 \prime$. 994005	. 986471	. 122151					
21.3°	$7^{\circ} 05^{\prime} 31^{\prime \prime}$. 993948	. 986343	. 122716	26.1°	$8^{\circ} 41^{\prime} 07^{\prime \prime}$. 990922	. 979559	. 149637
$21.4{ }^{\circ}$	$7^{\circ} 07^{\prime} 31^{\prime \prime}$. 993891	. 986216	. 123281	26.2°	$8^{\circ} 43^{\prime} 07^{\prime \prime}$.990853	. 979403	. 150193
21.5°	$7^{\circ} 09^{\prime} 30^{\prime \prime}$. 993834	. 986088	. 123846	26.3°	$8^{\circ} 45^{\prime} 06^{\prime \prime}$. 990783	. 979247	. 150750
21.6°	$7^{\circ} 11$ 30"	. 993777	. 985959	. 124410	$26.4{ }^{\circ}$	$8^{\circ} 47^{\prime} 05^{\prime \prime}$. 990713	. 979090	151306
21.7°	$7{ }^{\circ} 13^{\prime} 30^{\prime \prime}$. 993719	. 985829	. 124974	$26.5{ }^{\circ}$	$8^{\circ} 49^{\prime} 05^{\prime \prime}$. 990642	. 978933	151861
$21.8{ }^{\circ}$	$7{ }^{\circ} 15^{\prime} 29^{\prime \prime}$. 993661	. 985699	. 125539	$26.6{ }^{\circ}$	$8^{\circ} 51^{\prime} 04^{\prime \prime}$. 990572	. 978776	.152417
21.9°	$7{ }^{\circ} 17^{\prime} 29^{\prime \prime}$. 993603	. 985568	. 126103	$26.7{ }^{\circ}$	$8^{\circ} 53^{\prime} 03^{\prime \prime}$. 990501	. 978617	. 152973
					$26.8{ }^{\circ}$	$8^{\circ} 55^{\prime} 03^{\prime \prime}$. 990430	. 978459	. 153528
22.0°	$7^{\circ} 19^{\prime} 28^{\prime \prime}$. 993545	. 985437	. 126667	$26.9{ }^{\circ}$	$8^{\circ} 57^{\prime} 02 \prime$. 990359	. 978299	. 154083
$22.1{ }^{\circ}$	$7^{\circ} 21^{\prime} 28^{\prime \prime}$. 993486	. 985305	. 127230	27.0°	$8^{\circ} 59^{\prime} 02^{\prime \prime}$. 990287	. 978139	. 154638
$22.2{ }^{\circ}$	$7^{\circ} 23^{\prime} 28^{\prime \prime}$.992 427	. 985173	. 127794					
$22.3{ }^{\circ}$	$7{ }^{\circ} 25^{\prime} 27^{\prime \prime}$. 993368	. 985040	. 128357	$27.1{ }^{\circ}$	$9^{\circ} 01^{\prime} 01^{\prime \prime}$. 990215	. 977978	155193
$22.4{ }^{\circ}$	$7^{\circ} 27^{\prime \prime}{ }^{\prime \prime}$. 993308	. 984906	. 128920	27.2°	$9^{\circ} 03^{\prime} 00^{\prime \prime}$. 990143	. 977817	. 155747
$22.5{ }^{\circ}$	$7^{\circ} 29^{\prime} 26^{\prime \prime}$. 993248	. 984772	. 129483	27.3°	$9^{\circ} 05^{\prime} 00^{\prime \prime}$. 990071	. 977655	. 156301
$22.6{ }^{\circ}$	$7{ }^{\circ} 31 \cdot 26^{\prime \prime}$. 993188	984638	. 130046	$27.4{ }^{\circ}$	$9^{\circ} 06^{\prime} 59^{\prime \prime}$. 989998	. 977493	. 156855
$22.7{ }^{\circ}$	$7{ }^{\circ} 33^{\prime 2} 5^{\prime \prime}$. 993128	. 984502	. 130609	27.5°	$9^{\circ} 08^{\prime} 58^{\prime \prime}$. 989925	. 977330	. 157409
$22.8{ }^{\circ}$	$7^{\circ} 35^{\prime} 25^{\prime \prime}$. 993068	. 984366	. 131172	$27.6{ }^{\circ}$	$9^{\circ} 10^{\prime} 58^{\prime \prime}$. 989852	. 977167	. 157963
22.9°	$7^{\circ} 37^{\prime} 24^{\prime \prime}$. 993007	. 984230	. 131734	27.7°	$9^{\circ} 12^{\prime} 57^{\prime \prime}$. 989779	. 977003	. 158516
					$27.8{ }^{\circ}$	$9^{\circ} 14^{\prime} 56^{\prime \prime}$. 989705	. 976838	. 159070
$23.0{ }^{\circ}$	$7^{\circ} 39^{\prime} 24^{\prime \prime}$. 992946	. 984093	. 132296	27.9°	$9^{\circ} 16^{\prime} 55^{\prime \prime}$. 989631	. 976673	. 159623
$23.1{ }^{\circ}$	$7^{\circ} 41^{\prime} 23^{\prime \prime}$. 992884	. 983955	. 132858	28.0°	$9^{\circ} 18^{\prime} 55^{\prime \prime}$. 989557	. 976508	. 160176
$23 .{ }^{\circ}$	$7^{\circ} 43^{\prime} 23^{\prime \prime}$. 992823	. 983817	. 133420					
$23.3{ }^{\circ}$	$7^{\circ} 45^{\prime} 22^{\prime \prime}$. 992761	. 983678	. 133982	$28.1{ }^{\circ}$	$9^{\circ} 20^{\prime} 54{ }^{\prime \prime}$. 989482	. 976341	. 160728
$23.4{ }^{\circ}$	$7{ }^{\circ} 47^{\prime} 22^{\prime \prime}$. 992699	. 983539	. 134543	$28.2{ }^{\circ}$	$9^{\circ} 22^{\prime} 53^{\prime \prime}$. 989408	. 976174	. 161281
$23.5{ }^{\circ}$	$7^{\circ} 49^{\prime} 21^{\prime \prime}$. 992636	. 983399	. 135105	$28.3{ }^{\circ}$	$9^{\circ} 24^{\prime} 53^{\prime \prime}$. 989333	. 976007	. 161833
$23.6{ }^{\circ}$	$7^{\circ} 51^{\prime} 21^{\prime \prime}$. 992574	. 983258	. 135666	$28.4{ }^{\circ}$	$9^{\circ} 26^{\prime} 52^{\prime \prime}$. 989257	. 975839	. 162385
$23.7{ }^{\circ}$	$7{ }^{\circ} 53^{\prime} 20^{\prime \prime}$. 992511	. 983117	. 136227	$28.5{ }^{\circ}$	$9^{\circ} 28^{\prime} 51 "$. 989182	. 975670	. 162937
$23.8{ }^{\circ}$	$7{ }^{\circ} 55^{\prime} 20^{\prime \prime}$. 992448	. 982976	. 136788	$28.6{ }^{\circ}$	$9^{\circ} 30^{\prime} 51^{\prime \prime}$. 989106	. 975500	. 163489
$23.9{ }^{\circ}$	$7^{\circ} 57^{\prime \prime} 19^{\prime \prime}$. 992384	. 982834	. 137348	$28.7{ }^{\circ}$	$9^{\circ} 32^{\prime} 50^{\prime \prime}$. 989030	. 975331	. 164040
					$28.8{ }^{\circ}$	$9^{\circ} 34^{\circ} 49^{\prime \prime}$. 988954	. 975161	. 164591
24.0°	$7^{\circ} 59^{\prime} 19^{\prime \prime}$	992321	. 982691	. 137909	$28.9{ }^{\circ}$	$9^{\circ} 36{ }^{\prime} 48^{\prime \prime}$. 988877	. 974990	. 165142
$24.1{ }^{\circ}$	$8^{\circ} 01 \times 18^{\prime \prime}$. 992257	. 982547	. 138469	29.0°	$9^{\circ} 38{ }^{\prime \prime} 48^{\prime \prime}$. 988800	. 974819	. 165693
24.2°	$8^{\circ} 03^{\prime} 48^{\prime \prime}$. 992192	. 982403	. 139029					
$24.3{ }^{\circ}$	$8^{\circ} 05^{\prime} 17^{\prime \prime}$	992128	. 982259	. 139589	$29.1{ }^{\circ}$	$9^{\circ} 40^{\prime} 47^{\prime \prime}$	998723	. 974647	. 166244
$24.4{ }^{\circ}$	$8^{\circ} 07^{\prime} 17^{\prime \prime}$. 992063	. 982114	. 140149	$29.2{ }^{\circ}$	$9^{\circ} 42^{\prime} 46^{\prime \prime}$. 988646	. 974475	. 166794
24.5°	$8^{\circ} 09^{\prime} 16^{\prime \prime}$. 991998	. 981968	. 140708	$29.3{ }^{\circ}$	$9^{\circ} 44^{\prime} 45^{\prime \prime}$. 988568	. 974301	. 167344
$24.6{ }^{\circ}$	$8^{\circ} 11^{\prime} 16^{\prime \prime}$. 991933	. 981822	. 141268	$29.4{ }^{\circ}$	$9^{\circ} 46^{\prime} 45^{\prime \prime}$. 988491	. 974128	. 167894
$24.7{ }^{\circ}$	$8^{\circ} 13^{\prime} 15^{\prime \prime}$. 991867	. 981675	. 141827	$29.5{ }^{\circ}$	$9^{\circ} 48^{\prime} 44^{\prime \prime}$. 988412	. 973954	. 168444
$24.8{ }^{\circ}$	$8^{\circ} 15^{\prime} 15^{\prime \prime}$. 991801	. 981528	. 142386	$29.6{ }^{\circ}$	$9^{\circ} 50^{\prime} 43^{\prime \prime}$. 988334	. 973779	. 168993

Table A-9. Functions of the 10-chord spiral (continued)

Δ	A	$\frac{\mathrm{C}}{\mathrm{~L} .}$	$\frac{\mathrm{X}}{\mathrm{L}}$	$\frac{\mathrm{Y}}{\mathrm{L}}$	Δ	A	$\frac{C}{L}$	$\frac{\mathrm{X}}{\mathrm{L}}$.	$\frac{Y}{\text { L }}$
$29.7{ }^{\circ}$	$9^{\circ} 52^{\prime} 42^{\prime \prime}$. 988255	. 973604	. 169543	$34.6{ }^{\circ}$	$11^{\circ} 29^{\prime} 57^{\prime \prime}$. 984083	. 964330	. 196180
$28.8{ }^{\circ}$	$9^{\circ} 54^{\prime} 41^{\prime \prime}$. 988176	. 973428	. 170092	$34.7{ }^{\circ}$	$11^{\circ} 31^{\prime} 56^{\prime \prime}$. 983991	. 964127	. 196718
$29.9{ }^{\circ}$	$9^{\circ} 56^{\prime} 41^{\prime \prime}$. 988097	. 973251	. 170641	$34.8{ }^{\circ}$	$11^{\circ} 33^{\prime} 55^{\prime \prime}$. 983899	. 963923	. 197256
					$34.9{ }^{\circ}$	$11^{\circ} 35^{\prime} 54^{\prime \prime}$. 983807	. 963719	. 197793
30.0°	$9^{\circ} 58^{\prime} 40^{\prime \prime}$. 988018	. 973074	.171189					
					35.0°	$11^{\circ} 37^{\prime \prime} 53^{\prime \prime}$. 983715	. 963515	. 198330
$30.1{ }^{\circ}$	$10^{\circ} 00^{\prime} 39^{\prime \prime}$. 987938	. 972897	. 171738					
$30.2{ }^{\circ}$	$10^{\circ} 02^{\prime} 38^{\prime \prime}$. 987858	. 972719	. 172286	$35.1{ }^{\circ}$	$11^{\circ} 39^{\prime \prime} 52^{\prime \prime}$. 983622	. 953300	198866 .199403
$30.3{ }^{\circ}$	$10^{\circ} 04^{\prime} 37^{\prime \prime}$. 987778	. 972540	. 172834	$35.2{ }^{\circ}$	$11^{\circ} 41^{\prime} 50^{\prime \prime}$. 983520	. 963103	199403
$30.4{ }^{\circ}$	$10^{\circ} 06^{\prime} 37^{\prime \prime}$. 987699	. 972361	. 173382	35.3°	$11^{\circ} 43^{\prime} 49^{\prime \prime}$. 983436	. 962897	. 199939
$30.5{ }^{\circ}$	$10^{\circ} 08^{\prime} 36^{\prime \prime}$. 987617	. 972187	. 173929	$35.4{ }^{\circ}$	$11^{\circ} 45^{\prime} 48^{\prime \prime}$. 983343	. 962690	. 200475
$30.6{ }^{\circ}$	$10^{\circ} 10^{\prime} 35^{\prime \prime}$. 987536	. 972000	. 174477	$35.5{ }^{\circ}$	$11^{\circ} 47^{\prime \prime} 47^{\prime \prime}$. 983249	. 962483	. 201010
$30.7{ }^{\circ}$	$10^{\circ} 12^{\prime} 34^{\prime \prime}$. 987455	. 971820	. 175023	$35.6{ }^{\circ}$	$11^{\circ} 49^{\prime} 46^{\prime \prime}$. 983155	. 962275	. 201546
$30.8{ }^{\circ}$	$10^{\circ} 14^{\prime} 33^{\prime \prime}$. 987373	. 971638	. 175571	$35.7{ }^{\circ}$	$11^{\circ} 51^{\prime \prime} 45^{\prime \prime}$. 983061	. 962066	. 202081
$30.9{ }^{\circ}$	$10^{\circ} 16^{\prime} 32^{\prime \prime}$. 987291	. 971456	. 176117	$35.8{ }^{\circ}$	$11^{\circ} 53^{\prime} 44^{\prime \prime}$. 982966	. 961857	. 202616
31.0°	100 $18^{\prime} 3{ }^{\prime \prime}$	987209	971273	176664	$35.9{ }^{\circ}$	$11^{\circ} 55^{\prime} 43^{\prime \prime}$. 982872	. 961648	. 203151
	10	. 98	. 971273		36.0°	$11^{\circ} 57^{\prime} 41^{\prime \prime}$. 982777	. 961438	. 203685
31.1°	$10^{\circ} 20^{\prime} 31^{\prime \prime}$. 987127	. 971090	. 177210					
31.2°	$10^{\circ} 22^{\prime} 30^{\prime \prime}$. 987044	. 970907	. 177756	$36.1{ }^{\circ}$	$11^{\circ} 59^{\prime \prime} 40^{\prime \prime}$. 982681	. 961227	. 204219
31.3°	$10^{\circ} 24^{\prime} 29^{\prime \prime}$. 986962	. 970722	. 178302	$36.2{ }^{\circ}$	$12^{\circ} 01^{\prime \prime} 39^{\prime \prime}$. 982586	. 961016	. 204753
$31.4{ }^{\circ}$	$10^{\circ} 26^{\prime} 28^{\prime \prime}$. 986879	. 970537	. 178847	$36.3{ }^{\circ}$	$12^{\circ} 03^{\prime} 38^{\prime \prime}$. 982490	. 960804	. 205286
$31.5{ }^{\circ}$	$10^{\circ} 28^{\prime} 27^{\prime \prime}$. 986795	. 970352	. 179392	$36.4{ }^{\circ}$	$12^{\circ} 05^{\prime} 37^{\prime \prime}$. 982394	960592	. 205820
$31.6{ }^{\circ}$	$10^{\circ} 30^{\prime} 26^{\prime \prime}$. 986712	. 970166	. 179938	$36.5{ }^{\circ}$	$12^{\circ} 07^{\prime \prime} 36^{\prime \prime}$. 982298	. 960379	. 206353
31.7°	$10^{\circ} 32^{\prime} 25^{\prime \prime}$. 986628	. 969980	. 180482	$36.6{ }^{\circ}$	$12^{\circ} 09^{\prime} 34^{\prime \prime}$. 982201	. 960165	. 206886
31.8°	$10^{\circ} 34^{\prime} 24^{\prime \prime}$. 986544	. 969792	. 181027	$36.7{ }^{\circ}$	120 $11^{\prime} 33^{\prime \prime}$. 982104	. 959951	. 207418
31.9°	$10^{\circ} 36^{\prime} 24^{\prime \prime}$. 986459	. 969605	. 181571	$36.8{ }^{\circ}$	$12^{\circ} 13^{\prime} 32^{\prime \prime}$. 982007	. 959737	. 207951
					$36.9{ }^{\circ}$	$12^{\circ} 15^{\prime} 31^{\prime \prime}$. 981910	. 959522	. 208483
32.0°	$10^{\circ} 38^{\prime} 23^{\prime \prime}$. 986375	.969417	. 182116					
$32.1{ }^{\circ}$	$10^{\circ} 40^{\prime} 22^{\prime \prime}$. 986290	. 969228	. 182659	37.0°	$12^{\circ} 17^{\prime} 30^{\prime \prime}$. 981813	. 959306	. 209014
$32.2{ }^{\circ}$	$10^{\circ} 42^{\prime} 21^{\prime \prime}$. 986205	. 969039	. 183203	37.1°	$12^{\circ} 19^{\prime} 28^{\prime \prime}$. 981715	. 959090	209546
$32.3{ }^{\circ}$	$10^{\circ} 44^{\prime} 20^{\prime \prime}$. 986119	. 968849	. 183747	37.2°	$12^{\circ} 21^{\prime} 27^{\prime \prime}$. 981617	. 958874	210077
$32.4{ }^{\circ}$	$10^{\circ} 46^{\prime \prime} 19$. 986033	. 968658	. 184290	$37.3{ }^{\circ}$	$12^{\circ} 23^{\prime} 26^{\prime \prime}$. 981518	. 958657	210608
$32.5{ }^{\circ}$	$10^{\circ} 48^{\prime \prime} 18$. 985948	. 968468	. 184833	$37.4{ }^{\circ}$	$12^{\circ} 25^{\prime} 25^{\prime \prime}$. 981420	. 958439	211139
$32.6{ }^{\circ}$	$10^{\circ} 50^{\prime} 17^{\prime \prime}$. 985861	. 968276	. 185376	37.5°	$12^{\circ} 27^{\prime} 23^{\prime \prime}$. 981321	. 958221	211669
$32.7{ }^{\circ}$	$10^{\circ} 52^{\prime \prime} 16^{\prime \prime}$. 985775	. 968084	. 185918	$37.6{ }^{\circ}$	$12^{\circ} 29^{\prime} 22^{\prime \prime}$. 981222	. 958002	212199
$32.8{ }^{\circ}$	$10^{\circ} 54^{\prime} 15^{\prime \prime}$. 985688	. 967891	. 186460	37.7°	$12^{\circ} 31^{\prime} 21^{\prime \prime}$. 981122	. 957783	212729
$32.9{ }^{\circ}$	$10^{\circ} 56^{\prime \prime} 14^{\prime \prime}$. 985601	. 967698	. 187002	$37.8{ }^{\circ}$	$12^{\circ} 33^{\prime} 20^{\prime \prime}$. 981023	. 957563	. 213259
					37.9°	$12^{\circ} 35^{\prime} 18^{\prime \prime}$. 980923	. 957342	. 213788
33.0°	$10^{\circ} 58^{\prime} 13^{\prime \prime}$. 985514	. 967504	. 187544	38.0°	$12^{\circ} 37^{\prime} 17^{\prime \prime}$. 980823	. 957121	. 214317
$33.1{ }^{\circ}$	$11^{\circ} 00^{\prime \prime} 12^{\prime \prime}$. 985426	. 967310	. 188086					
$33.2{ }^{\circ}$	$11^{\circ} 02^{\prime \prime} 11^{\prime \prime}$. 985339	. 967115	. 188627	$38.1{ }^{\circ}$	$12^{\circ} 39^{\prime} 16^{\prime \prime}$. 980722	. 956900	. 214846
$33.3{ }^{\circ}$	$11^{\circ} 04^{\prime \prime} 10^{\prime \prime}$. 985251	. 966920	. 189168	$38.2{ }^{\circ}$	$12^{\circ} 41^{\prime} 14^{\prime \prime}$. 980622	. 956678	. 215375
$33.4{ }^{\circ}$	$11^{\circ} 06^{\prime} 09^{\prime \prime}$	985162	966724	. 189709	$38.3{ }^{\circ}$	$12^{\circ} 43^{\prime} 13^{\prime \prime}$. 980521	956456	215903
$33.5{ }^{\circ}$	$11^{\circ} 08^{\prime \prime} 08^{\prime \prime}$. 985074	. 966528	. 190250	$38.4{ }^{\circ}$	$12^{\circ} 45^{\prime} 12^{\prime \prime}$. 980420	956232	. 216431
$33.6{ }^{\circ}$	$11^{\circ} 10^{\prime} 07^{\prime \prime}$. 984985	. 966331	. 190790	$38.5{ }^{\circ}$	$12^{\circ} 47^{\prime} 11^{\prime \prime}$. 980318	956009	. 216959
$33.7{ }^{\circ}$	$11^{\circ} 12^{\prime} 06^{\prime \prime}$. 984896	. 966133	.191330	$38.6{ }^{\circ}$	$12^{\circ} 49^{\prime} 09^{\prime \prime}$. 980217	955785	. 217486
$33.8{ }^{\circ}$	$11^{\circ} 14^{\prime} 05^{\prime \prime}$. 984807	. 965935	. 191870	$38.7{ }^{\circ}$	$12^{\circ} 51^{\prime} 08^{\prime \prime}$. 980115	955560	. 218013
$33.9{ }^{\circ}$	$11^{\circ} 16^{\prime} 04^{\prime \prime}$. 984717	. 965736	. 192410	$38.8{ }^{\circ}$	$12^{\circ} 53^{\prime} 07^{\prime \prime}$. 980012	955335	. 218540
					$38.9{ }^{\circ}$	$12^{\circ} 55^{\prime} 05^{\prime \prime}$. 979910	955109	. 219067
34.0°	$11^{\circ} 18^{\prime \prime} 03^{\prime \prime}$. 984627	. 965537	. 192949					
$34.1{ }^{\circ}$	$11^{\circ} 20^{\prime} 02^{\prime \prime}$. 984537	. 965337	. 193488	$39.0{ }^{\circ}$	$12^{\circ} 57^{\prime \prime} 04^{\prime \prime}$. 979807	954883	. 219593
$34.2{ }^{\circ}$	$11^{\circ} 22^{\prime} 01^{\prime \prime}$. 984447	. 965137	. 194027	$39.1{ }^{\circ}$	$12^{\circ} 59^{\prime} 02^{\prime \prime}$. 979704	954656	. 220119
$34.3{ }^{\circ}$	$11^{\circ} 24^{\prime} 00^{\prime \prime}$. 984356	. 964936	. 194566	39.2°	$13^{\circ} 01^{\prime} 01^{\prime \prime}$. 979601	954429	. 220645
$34.4{ }^{\circ}$	$11^{\circ} 25^{\prime} 59^{\prime \prime}$. 984265	. 964734	. 195104	$39.3{ }^{\circ}$	$13^{\circ} 03^{\prime} 00^{\prime \prime}$. 979498	954201	. 221171
$34.5{ }^{\circ}$	$11^{\circ} 27^{\prime} 58^{\prime \prime}$. 984174	. 964532	. 195643	$39.4{ }^{\circ}$	$13^{\circ} 04^{\prime} 58^{\prime \prime}$. 979394	953973	. 221696
					$39.5{ }^{\circ}$	$13^{\circ} 06^{\prime} 57^{\prime \prime}$. 979290	. 953744	. 222221

Table A-9. Functions of the 10-chord spiral (continued)

Δ	A	C	\underline{X}	$\frac{Y}{1}$	Δ	A		$\frac{x}{L .}$	$\frac{Y}{L .}$
		L.	1	L.					
$39.6{ }^{\circ}$	$13^{\circ} 08^{\prime} 56^{\prime \prime}$. 979186	. 953514	222745	$42.4{ }^{\circ}$	$14^{\circ} 04^{\prime \prime} 14^{\prime \prime}$. 976164	. 946877	237320
$39.7{ }^{\circ}$	$13^{\circ} 10^{\prime} 54^{\prime \prime}$. 979081	. 953284	223270	$42.5{ }^{\circ}$	$14^{\circ} 06^{\prime} 12^{\prime \prime}$. 976053	. 946632	237836
$39.8{ }^{\circ}$	$13^{\circ} 12^{\prime} 53^{\prime \prime}$. 978977	. 953054	223794	$42.6{ }^{\circ}$	$14^{\circ} 08^{\prime} 10^{\prime \prime}$. 975941	946387	238352
$39.9{ }^{\circ}$	$13^{\circ} 14^{\prime} 51^{\prime \prime}$. 978872	. 952823	224318	$42.7{ }^{\circ}$	$14^{\circ} 10^{\prime} 09^{\prime \prime}$. 975829	. 946142	. 238868
					$42.8{ }^{\circ}$	$14^{\circ} 12^{\prime} 07^{\prime \prime}$. 975716	. 945895	239383
40.0°	$13^{\circ} 16^{\prime} 50^{\prime \prime}$. 978766	. 952591	. 224841	$42.9{ }^{\circ}$	$14^{\circ} 14^{\prime} 06^{\prime \prime}$. 975604	. 945649	. 239898
40.1°	$13^{\circ} 18^{\prime} 48^{\prime \prime}$. 978661	. 952359	. 225365	43.0°	$14^{\circ} 16^{\prime} 04^{\prime \prime}$. 975491	. 945402	240413
40.2°	$13^{\circ} 20^{\prime} 47^{\prime \prime}$. 978555	. 952127	. 225888					
40.3°	$13^{\circ} 22^{\prime} 46^{\prime \prime}$. 978440	. 951893	. 226410	$43.1{ }^{\circ}$	$14^{\circ} 18^{\prime} 02^{\prime \prime}$. 975378	. 945154	240927
$40.4{ }^{\circ}$	$13^{\circ} 24^{\prime} 44^{\prime \prime}$. 978343	. 951660	. 226933	43.2°	$14^{\circ} 20^{\prime} 01^{\prime \prime}$. 975264	. 944906	241442
40.5°	$13^{\circ} 26^{\prime} 43^{\prime \prime}$. 978236	. 951426	. 227455	43.3°	$14^{\circ} 21{ }^{\prime} 59^{\prime \prime}$. 975151	. 944657	. 241956
40.6°	$13^{\circ} 28^{\prime} 41^{\prime \prime}$. 978130	. 951191	. 227977	$43.4{ }^{\circ}$	$14^{\circ} 23^{\prime} 57^{\prime \prime}$. 975037	. 944408	242469
$40.7{ }^{\circ}$	$13^{\circ} 30^{\prime} 40^{\prime \prime}$. 978023	. 950956	. 228498	$43.5{ }^{\circ}$	$14^{\circ} 25^{\circ} 56^{\prime \prime}$. 974923	. 944158	. 242982
40.8°	$13^{\circ} 32^{\prime} 38^{\prime \prime}$. 977915	. 950720	. 229019	$43.6{ }^{\circ}$	$14^{\circ} 27^{\prime} 54^{\prime \prime}$. 974808	. 943908	243495
$40.9{ }^{\circ}$	$13^{\circ} 34^{\prime} 37^{\prime \prime}$. 977808	. 950484	. 229540	$43.7{ }^{\circ}$	$14^{\circ} 29^{\prime} 52^{\prime \prime}$. 974694	. 943657	244008
					$43.8{ }^{\circ}$	$14^{\circ} 31^{\prime} 50^{\prime \prime}$. 974579	. 943405	244520
41.0°	$13^{\circ} 36^{\prime} 35^{\prime \prime}$. 977700	. 950247	. 230061	43.9°	$14^{\circ} 33^{\prime} 49^{\prime \prime}$. 974464	. 943154	245032
$41.1{ }^{\circ}$	$13^{\circ} 38^{\prime} 34^{\prime \prime}$. 977592	. 950010	. 230581	44.0°	$14^{\circ} 35^{\prime} 47^{\prime \prime}$. 974348	. 942901	245544
41.2°	$13^{\circ} 40^{\prime} 32^{\prime \prime}$. 977484	. 949772	. 231102					
41.3°	$13^{\circ} 42^{\prime} 31 \prime$. 977375	. 949533	. 231621	$44.1{ }^{\circ}$	$14^{\circ} 37^{\prime} 45^{\prime \prime}$. 974233	. 942648	246055
41.4°	$13^{\circ} 44^{\prime} 29^{\prime \prime}$. 977266	. 949294	. 232141	$44.2{ }^{\circ}$	$14^{\circ} 39^{\prime} 44^{\prime \prime}$. 974117	. 942395	246567
41.5°	$13^{\circ} 46^{\prime} 28^{\prime \prime}$. 977157	. 949055	. 232660	$44.3{ }^{\circ}$	$14^{\circ} 41^{\prime} 42^{\prime \prime}$. 974001	. 942141	247077
41.6°	$13^{\circ} 48^{\prime} 26^{\prime \prime}$. 977048	. 948815	. 233179	$44.4{ }^{\circ}$	$14^{\circ} 43^{\prime} 40^{\prime \prime}$. 973884	. 941887	. 247588
41.7°	$13^{\circ} 50^{\prime} 25^{\prime \prime}$. 976938	. 948575	. 233698	$44.5{ }^{\circ}$	$14^{\circ} 45^{\prime} 38^{\prime \prime}$. 973768	. 941632	. 248098
41.8°	$13^{\circ} 52^{\prime} 23^{\prime \prime}$. 976828	948334	. 234216	$44.6{ }^{\circ}$	$14^{\circ} 47^{\prime} 37^{\prime \prime}$. 973651	. 941377	. 248608
41.9°	$13^{\circ} 54^{\prime} 22^{\prime \prime}$. 976718	. 948092	. 234734	$44.7{ }^{\circ}$	$14^{\circ} 49^{\prime} 35^{\prime \prime}$. 973534	. 941121	. 249117
					$44.8{ }^{\circ}$	$14^{\circ} 51^{\prime} 33^{\prime \prime}$. 973416	. 940864	. 249627
$42.0{ }^{\circ}$	$13^{\circ} 56^{\prime \prime} 20^{\prime \prime}$. 976608	. 947850	. 235252	$44.9{ }^{\circ}$	$14^{\circ} 53^{\prime} 31^{\prime \prime}$. 974299	. 940608	. 250135
$42.1{ }^{\circ}$	$13^{\circ} 58^{\prime \prime} 18^{\prime \prime}$. 976498	. 947608	. 235789	45.0°	$14^{\circ} 55^{\prime} 29^{\prime \prime}$. 973181	. 940350	. 250644
42.2°	$14^{\circ} 00^{\prime} 17^{\prime \prime}$. 976387	. 947365	. 236286					
$42.3{ }^{\circ}$	$14^{\circ} 02^{\prime} 15^{\prime \prime}$. 976276	. 947121	. 236803					

Table A-10. Subchord corrections (chord definition)

Table A-11. Subchord corrections (arc definition)

To use the table, look in the middle column for the temperature reading you have. If the reading you have is in degrees Centigrade, read the Fahrenheit equivalent in the right-hand column. If the reading you have is in degrees Fahrenheit, read the Centigrade equivalent in the left-hand column.
FORMULAS. $C=5 / 9$ (F-32) or $F=9 / 5(\mathrm{C}+32)$

-80 to 34			35 to 77			78 to 290		
C		F	C		F	C		F
-62	-80	-112	1.7	35	95.0	25.6	78	172.4
-57	-70	-94	2.2	36	96.8	26.1	79	174.2
-51	-60	-76	2.8	37	98.6	26.7	80	176.0
-46	-50	-58	3.3	38	100.4	27.2	81	177.8
-40	-40	-40	3.9	39	102.4	27.8	82	179.6
-34	-30	-22	4.4	40	104.0	28.3	83	181.4
-29	-20	-4	5.0	41	105.8	28.9	84	183.2
-23	-10	14	5.6	42	107.6	29.4	85	185.0
-17.8	0	32	6.1	43	109.4	30.0	86	186.8
-17.2	1	33.8	6.7	44	111.2	30.6	87	188.6
-16.7	2	35.6	7.2	45	113.0	31.1	88	190.6
-16.1	3	37.4	7.8	46	114.8	31.7	89	192.2
-15.6	4	39.2	8.3	47	116.6	32.2	90	194.0
-15.0	5	41.0	8.9	48	118.4	32.8	91	195.8
-14.4	6	42.8	9.4	49	120.2	33.3	92	197.6
-13.9	7	44.6	10.0	50	122.0	33.9	93	199.4
-13.3	8	46.4	10.6	51	123.8	34.4	94	201.2
-12.8	9	48.2	11.1	52	125.6	35.0	95	203.0
-12.2	10	50.0	11.7	53	127.4	35.6	96	204.8
-11.7	11	51.8	12.2	54	129.2	36.1	97	206.6
-11.1	12	53.6	12.8	55	131.0	36.7	98	208.4
-10.6	13	55.4	13.3	56	132.8	37.2	99	210.2
-10.0	14	57.2	13.9	57	134.6	37.8	100	212.0
-9.4	15	59.0	14.4	58	136.4	43	110	230
-8.9	16	60.8	15.0	59	138.2	49	120	248
-8.3	17	62.6	15.6	60	140.0	54	130	260
-7.8	18	64.4	16.1	61	141.8	60	140	284
-7.2	19	66.2	16.7	62	143.6	66	150	302
-6.7	20	68.0	17.2	63	145.4	71	160	320
-6.1	21	69.8	17.8	64	147.2	77	170	338
-5.6	22	71.6	18.3	65	149.0	82	180	356
-5.0	23	73.4	18.9	66	150.8	88	190	374
-4.4	24	75.2	19.4	67	152.6	93	200	392
-3.9	25	77.0	20.0	68	154.4	99	210	410
-3.3	26	78.8	20.6	69	156.2	100	212	413.6
-2.8	27	80.6	21.1	70	158.0	104	220	428
-2.2	28	82.4	21.7	71	159.8	110	230	446
-1.7	29	84.2	22.2	72	161.6	116	240	464
-1.1	30	86.0	22.8	73	163.4	121	250	482
-0.6	31	87.8	23.3	74	165.2	127	260	500
0.0	32	89.6	23.9	75	167.0	132	270	518
0.6	33	91.4	24.4	76	168.8	138	280	536
1.1	34	93.2	25.0	77	170.6	143	290	554

Table A-13. Conversion of meters to feet

Meters	Feet	Meters	Feet	Meters	Feet	Meters	Feet	Meters	Feet
0		50	164.04167	100	328.08333	150	492.12500	200	656.16667
1	3.28083	1	167.32250	1	331.36417	1	495.40583	1	659.44750
2	6.56167	2	170.60333	2	334.64500	2	498.68667	2	662.72833
3	9.84250	3	173.88417	3	337.92583	3	501.96750	3	666.00917
4	13.12333	4	177.16500	4	341.20667	4	505.24833	4	669.2900
5	16.40417	5	180.44583	5	344.48750	5	508.52917	5	672.57083
6	19.68500	6	183.72667	6	347.76833	6	511.81000	6	675.85167
7	22.96583	7	187.00750	7	351.04917	7	515.09083	7	679.13250
8	26.24667	8	190.28833	8	354.33000	8	518.37167	8	682.41333
9	29.52750	9	193.56917	9	357.61083	9	521.65250	9	685.69417
10	32.80833	60	196.85000	110	360.89167	160	524.93333	210	688.97500
1	36.08917	1	200.13083	1	364.17250	1	528.21417	1	692.25583
2	39.37000	2	203.41167	2	367.45333	2	531.49500	2	695.53667
3	42.65083	3	206.69250	3	370.73417	3	534.77583	3	698.81750
4	45.93167	4	209.97333	4	374.01500	4	538.05667	4	702.09833
5	49.21250	5	213.25417	5	377.29583	5	541.33750	5	705.37917
6	52.49333	6	216.53500	6	380.57667	6	544.61833	6	708.66000
7	55.77417	7	219.81583	7	383.85750	7	547.89917	7	711.94083
8	59.05500	8	223.09667	8	387.13833	8	551.18000	8	715.22167
9	62.33583	9	226.37750	9	390.41917	9	554.46083	9	718.50250
20	65.61667	70	229.65833	120	393.70000	170	557.74167	220	721.78333
1	68.89750	1	232.93917	1	396.98083	1	561.02250	1	725.06417
2	72.17822	2	236.22000	2	400.26167	2	564.30333	2	728.34500
3	75.45917	3	239.50083	3	403.54250	3	567.58417	3	731.62583
4	78.74000	4	242.78167	4	406.82333	4	570.86500	4	734.90667
5	82.02083	5	246.06250	5	410.10417	5	574.14583	5	738.18750
6	85.30167	6	249.34333	6	413.38500	6	577.42667	6	741.46833
7	88.58250	7	252.62417	7	416.66583	7	580.70750	7	744.74917
8	91.86333	8	255.90500	8	419.94667	8	583.98833	8	748.03000
9	95.14417	9	259.18583	9	423.22750	9	587.26917	9	751.31083
30	98.42500	80	262.46667	130	426.50833	180	590.55000	230	754.59167
1	101.70583	1	265.74750	1	429.78917	1	593.83083	1	757.87250
2	104.98667	2	269.02833	2	433.07000	2	597.11167	2	761.15333
3	108.26750	3	272.30917	3	436.35083	3	600.39250	3	764.43417
4	111.54833	4	275.59000	4	439.63167	4	603.67333	4	767.71500
5	114.82917	5	278.87083	5	442.91250	5	606.95417	5	770.99583
6	118.11000	6	282.15167	6	446.19333	6	610.23500	6	774.27667
7	121.39083	7	285.43250	7	449.47417	7	613.51583	7	777.55750
8	124.67167	8	288.71333	8	452.75500	8	616.79667	8	780.83833
9	127.95250	9	291.99417	9	456.03583	9	620.07750	9	784.11917
40	131.23333	90	295.27500	140	459.31667	190	623.35833	240	787.40000
1	134.51417	1	298.55583	1	462.59750	1	626.63917	1	790.68083
2	137.79500	2	301.83667	2	465.87833	2	629.92000	2	793.96167
3	141.07583	3	305.11750	3	469.15917	3	633.20083	3	797.24250
4	144.35667	4	308.39833	4	472.44000	4	636.48167	4	800.52333
5	147.63750	5	311.67917	5	475.72083	5	639.76250	5	803.80417
6	150.91833	6	314.96000	6	479.00167	6	643.04333	6	807.08500
7	154.19917	7	318.24083	7	482.28250	7	646.32417	7	810.36583
8	157.48000	8	321.52167	8	485.56333	8	649.60500	8	813.64667
9	160.76083	9	324.80250	9	488.84417	9	652.88583	9	816.92750

Table A-13. Conversion of meters to feet (continued)

Meters	Feet								
250	820.20833	300	984.25000	350	1,148.29167	400	1,312.33333	450	1,476.37500
1	823.48917	1	987.53083	1	1,151.57250	1	1,315.61417	1	1,479.65583
2	826.77000	2	990.81167	2	1,154.85333	2	1,318.89500	2	1,482.93667
3	830.05083	3	994.09250	3	1,158.13417	3	1,322.17583	3	1,486.21750
4	833.33167	4	997.37333	4	1,161.41500	4	1,325.45667	4	1,489.49833
5	836.61250	5	1,000.65417	5	1,164.69583	5	1,328.73750	5	1,492.77917
6	839.89333	6	1,003.93500	6	1,167.97667	6	1,332.01833	6	1,496.06000
7	843.17417	7	1,007.21583	7	1,171.25750	7	1,335.29917	7	1,499.34083
8	846.45500	8	1,010.49667	8	1,174.53833	8	1,338.58000	8	1,502.62167
9	849.73583	9	1,013.77750	9	1,177.81917	9	1,341.86083	9	1,505.90250
260	853.01667	310	1,017.06833	360	1,181.10000	410	1,345.14167	460	1,509.18333
1	856.29750	1	1,020.33917	1	1,184.38083	1	1,348.42250	1	1,512.48417
2	859.57833	2	1,023.62000	2	1,187.86187	2	1,351.70333	2	1,516.74500
3	882.85917	3	1,026.90083	3	1,190.94250	3	1,354.98417	3	1,519.02583
4	886.14000	4	1,030.18167	4	1,194.22333	4	1,358.26500	4	1,622.30667
5	869.42083	5	1,033.46250	5	1,197.50417	5	1,381.54583	5	1,625.58760
6	872.70167	6	1,036.74333	6	1,200.78500	8	1,384.82867	6	1,628.86833
7	875.98250	7	1,040.02417	7	1,204.08583	7	1,368.10750	7	1,632.14917
8	879.26333	8	1,043.30500	8	1,207.34667	8	1,371.38833	8	1,535.43000
9	882.64417	9	1,046.68583	9	1,210.62750	9	1,374.68917	9	1,538.71083
270	885.82500	320	1,049.86667	370	1,213.90833	420	1,377.95000	470	1,541.99167
1	889.10583	1	1,053.14750	1	1,217.18917	1	1,381.23083	1	1,545.27250
2	892.38667	2	1,056.42833	2	1,220.47000	2	1,384.51167	2	1,648.65333
3	895.66750	3	1,059.70917	3	1,223.76083	3	1,387.79250	3	1,561.83417
4	898.94833	4	1,062.99000	4	1,227.03167	4	1,391.07333	4	1,555.11500
5	902.22917	5	1,066.27083	5	1,230.31250	5	1,394.35417	5	1,558.39583
6	906.51000	6	1,069.65167	6	1,233.69333	6	1,397.63500	6	1,561.67667
7	908.79083	7	1,072.83250	7	1,236.87417	7	1,400.91.583	7	1,564.95750
8	912.07167	8	1,076.11333	8	1,240.16500	8	1,404.19867	8	1,568.23833
9	915.35260	9	1,079.39417	9	1,243.43583	9	1,407.47750	9	1,671.51917
280	918.63333	330	1,082.67500	380	1,246.71667	430	1,410.75833	480	1,574.80000
1	921.91417	1	1,085.95583	1	1,249.99750	1	1,414.03917	1	1,678.08083
2	925.19500	2	1,089.23667	2	1,253.27833	2	1,417.32000	2	1,581.36167
3	928.47583	3	1,092.51750	3	1,256.55917	3	1,420.60083	3	1,584.64250
4	931.75667	4	1,095.79833	4	1,259.84000	4	1,423.88167	4	1,587.92333
5	935.03750	5	1.099 .07917	5	1,263.12083	5	1,427.16250	5	1,591.20417
6	938.31833	6	1,012.36000	6	1,266.40167	6	1,430.44333	6	1,594.48500
7	941.59917	7	1,105.64083	7	1,269.68250	7	1,433.72417	7	1,597.76583
8	944.88000	8	1,108.92167	8	1,272.96333	8	1,437.00500	8	1,601.04667
9	948.16083	9	1,112.20250	9	1,276.24417	9	1,440.28583	9	1,604.32750
290	951.44167	340	1,115.48333	390	1.279.52500	440	1,443.56667	490	1,607.60833
1	954.72250	1	1,118.76417	1	1,282.80583	1	1,446.84750	1	1,610.88917
2	958.00333	2	1,122.04500	2	1,286.08667	2	1,450.12833	2	1,614.17000
3	961.28417	3	1,125.32583	3	1,289.36750	3	1,453.40917	3	1,617.45083
4	964.56500	4	1.128.60667	4	1,292.64833	4	1,456.69000	4	1,620.73167
5	967.84583	5	1,131.88750	5	1,295.92917	5	1,459.97083	5	1,624.01250
6	971.12667	6	1,135.16833	6	1,299.21000	6	1,463.25167	6	1,627.29333
7	974.40750	7	1.138.44917	7	1,302.49083	7	1,466.53250	7	1,630.57417
8	977.68833	8	1.141.73000	8	1,305.77167	8	1,469.81333	8	1,633.85500
9	980.96917	9	1,145.01083	9	1,309.05250	9	1,473.09417	9	1,637.13583

Table A-13. Conversion of meters to feet (continued)

Meters	Feet	Meters	Feet	Meters	Feet	Meters	Fert	Meters	Feet
500	1,640.41667	550	1,804.45833	600	1,968.50000	650	2,132.54167	700	2,296.58333
1	1,643.69750	1	1,807.73917	1	1,971.78083	1	2,135.82250	1	2,299.86417
2	1,646.97833	2	1,811.02000	2	1,975.06167	2	2,139.10333	2	2,303.14500
3	1,650.25917	3	1,814.30083	3	1,978.34250	3	2,142.38417	3	2,306.42583
4	1,653.54000	4	1,817.58167	4	1,981.62333	4	2,145.66500	4	2,309.70667
5	1,656.82083	5	1,820.86250	5	1,984.90417	5	2,148.94583	5	2,312.98750
6	1,660.10167	6	1,824.14333	6	1.988.18500	6	2,152.22667	6	2,316.26833
7	1,663.38250	7	1,827.42417	7	1.991.46583	7	2,155.50750	7	2,319.54917
8	1,666.66333	8	1,830.70500	8	1.994.74667	8	2,158.78833	8	2,322.83000
9	1,669.94417	9	1,833.98583	9	1,998.02750	9	2,162.06917	9	2,226.11083
510	1,673.22500	560	1,837.26667	610	2,001.30833	660	2,165.35000	710	2,329.39167
1	1,676.50583	1	1,840.54750	1	2,004.58917	1	2,168.63083	1	2,332.67250
2	1,679.78667	2	1,843.82833	2	2,007.87000	2	2,171.91167	2	2,335.95333
3	1,683.06750	3	1,847.10917	3	2,011.15083	3	2,175.19250	3	2,339.23417
4	1,686.34833	4	1,850.39000	4	2,014.43167	4	2,178.47333	4	2,342.51500
5	1,689.62917	5	1,853.67083	5	2,017.71250	5	2,181.75417	5	2,345.79583
6	1,692.91000	6	1,856.95167	6	2,020.99333	6	2,185.03500	6	2,349.07667
7	1,696.19083	7	1,860.23250	7	2,024.27417	7	2,188.31583	7	2,352.35750
8	1,699.47167	8	1,863.51333	8	2,027.55500	8	2,191.59667	8	2,355.63833
9	1,702.75250	9	1,866.79417	9	2,030.83583	9	2,194.87750	9	2,358.91917
520	1,706,03333	570	1,870.07500	620	2,034.11667	670	2,198.15833	720	2,362.20000
1	1,709.31417	1	1,873.35583	1	2,037.39750	1	2,201.43917	1	2,365.48083
2	1,712.59500	2	1,876.63667	2	2,040.67833	2	2,204.72000	2	2,368.76167
3	1,715.87583	3	1,879.91750	3	2,043.95917	3	2,208.00083	3	2,372.04250
4	1.719.15667	4	1,883.19833	4	2,047.24000	4	2,211.28167	4	2,375.32333
5	1,722.43750	5	1,886.47917	5	2,050.52083	5	2,214.56250	5	2,378.60417
6	1,725.71833	6	1,889.76000	6	2,053.80167	6	2,217.84333	6	2,381.88500
7	1,728.99917	7	1,893.04083	7	2,057.08250	7	2,221.12417	7	2,385.16583
8	1,732.28000	8	1,896.32167	8	2,060.36333	8	2,224.40500	8	2,388.44667
9	1,735,56083	9	1,899.60250	9	2,063.64417	9	2,227.68583	9	2,391.72750
530	1,738.84167	580	1,902.88333	630	2,066.92500	680	2,230.96667	730	2,395.00833
1	1,742.12250	1	1,906.16417	1	2,070.20583	1	2,234.24750	1	2,398.28917
2	1,745.40333	2	1,909.44500	2	2,073.48667	2	2,237.52833	2	2,401.57000
3	1,748.68417	3	1,912.72583	3	2,076.76750	3	2,240.80917	3	2,404.85083
4	1,751.96500	4	1,916.00667	4	2,080.04833	4	2,244.09000	4	2,408.13167
5	1,755.24583	5	1,919.28750	5	2,083.32917	5	2,247.37083	5	2,411.41250
6	1,758.52667	6	1,922.56833	6	2,086.61000	6	2,250.65167	6	2,414.69333
7	1,761.80750	7	1,925.84917	7	2,089.89083	7	2,253.93250	7	2,417.97417
8	1,765,08833	8	1,929.13000	8	2,093.17167	8	2,257.21333	8	2,421.25500
9	1,768.36917	9	1,932.41083	9	2,096.45250	9	2,260.49417	9	2,424.53583
540	1,771.65000	590	1,935.69167	640	2,099.73333	690	2,263.77500	740	2,427.81667
1	1,774.93083	1	1,938.97250	1	2,103.01417	1	2,267.05583		2,431.09750
2	1,778.21167	2	1,942.25333	2	2,106.29500	2	2,270.33667	2	2,434.37833
3	1,781.49250	3	1,945.53417	3	2,109.57583	3	2,273.61750	3	2,437.65917
4	1,784.77333	4	1,948.81500	4	2,112.85667	4	2,276.89833	4	2,440.94000
5	1,788.05417	5	1,952.09583	5	2.116.13750	5	2,280.17917	5	2,444.22083
6	1,791.33500	6	1,955.37667	6	2,119.41833	6	2,283.46000	6	2,447.50167
7	1,794.61583	7	1,958.65750	7	2,122.69917	7	2,286.74083	7	2,450.78250
8	1,797.89667	8	1,961.93833	8	2,125.98000	8	2,290.02167	8	2,454.06333
9	1,801.17750	9	1,965.21917	9	2,129.26083	9	2,293.30250	9	2,457.34417

Table A-13. Conversion of meters to feet (continued)

Meters	Feet								
750	2,460.62500	800	2,624.66667	850	2,788.70833	900	2,952.75000	950	3,116.79167
1	2,463.90583	1	2,627.94750	1	2,791.98917	1	2,956.03083	1	3,120.07250
2	2,467.18667	2	2,631.22833	2	2,795.27000	2	2,959.31167	2	3,123.35333
3	2,470.46750	3	2,634.50917	3	2,798.55083	3	2,962.59250	3	3,126.63417
4	2,473.74833	4	2,637.79000	4	2,801.83167	4	2,965.87333	4	3,129.91500
5	2,477.02917	5	2,641.07083	5	2,805.11250	5	2,969.15417	5	3,133.19583
6	2,480.31000	6	2,644.35167	6	2,808.39333	6	2,972.43500	6	3,136.47667
7	2,483.59083	7	2,647.63250	7	2,811.67417	7	2,975.71583	7	3,139.75750
8	2,486.87167	8	2,650.91333	8	2,814.95500	8	2,978.99667	8	3,143.03833
9	2,490.15250	9	2,654.19417	9	2,818.23583	9	2,982.27750	9	3,146.31917
760	2,493.43333	810	2,657.47500	860	2,821.51667	910	2,985.55833	960	3,149.60000
1	2,496.71417	1	2,660.75583	1	2,824.79750	1	2,988.83917	1	3,152.88083
2	2,499.99500	2	2,664.03667	2	2,828.07833	2	2,992.12000	2	3,156.16167
3	2,503.27583	3	2,667.31750	3	2,831.35917	3	2,995.40083	3	3,159.44250
4	2,506.55667	4	2,670.59833	4	2,834.64000	4	2,998.68167	4	3,162.72333
5	2,509.83750	5	2,673.87917	5	2,837.92083	5	3,001.96250	5	3,166.00417
6	2,513.11833	6	2,677.16000	6	2,841.20167	6	3,005.24333	6	3,169.28500
7	2,516.39917	7	2,680.44083	7	2,844.48250	7	3,008.52417	7	3,172.56583
8	2,519.68000	8	2,683.72167	8	2,847.76333	8	3,011.80500	8	3,175.84667
9	2,522.96083	9	2,687.00250	9	2,851.04417	9	3,015.08583	9	3,179.12750
770	2,526.24167	820	2,690.28333	870	2,854.32500	920	3,018.36667	970	3,182.40833
1	2,529.52250	1	2,693.56417	1	2,857.60583	1	3,021.64750	1	3,185.68917
2	2,532.80333	2	2,696.84500	2	2,860.88667	2	3,024.92833	2	3,188.97000
3	2,536.08417	3	2,700.12583	3	2,864.16750	3	3,028.20917	3	3,192.25083
4	2,539.36500	4	2,703.40667	4	2,867.44833	4	3,031.49000	4	3,195.53167
5	2,542.64583	5	2,760.68750	5	2,870.72917	5	3,034.77083	5	3,198.81250
6	2,545.92667	6	2,709.96833	6	2,874.01000	6	3,038.05167	6	3,202.09333
7	2,549.20750	7	2,713.24917	7	2,877.29083	7	3,041.33250	7	3,205.37417
8	2,552.48833	8	2,716.53000	8	2,880.57167	8	3,044.61333	8	3,208.65500
9	2,555.76917	9	2,719.81083	9	2,883.85250	9	3,047.89417	9	3,211.93583
780	2,559.05000	830	2.723.09167	880	2,887.13333	930	3,051.17500	980	3,215.21667
1	2,562.33083	1	2,726.37250	1	2,890.41417	1	3,054.45583	1	3,218.49750
2	2,565.61167	2	2,729.65333	2	2,893.69500	2	3,057.73667	2	3,221.77833
3	2,568.89250	3	2,732.93417	3	2,896.97583	3	3,061.01750	3	3,225.05917
4	2,572.17333	4	2,736.21500	4	2,900.25667	4	3,064.29833	4	3,228.34000
5	2,575.45417	5	2,739.49583	5	2,903.53750	5	3,067.57917	5	3,231.62083
6	2,578.73500	6	2,742.77667	6	2,906.81833	6	3,070.86000	6	3,234.90167
7	2,582.01583	7	2,746.05750	7	2,910.09917	7	3,074.14083	7	3,238.18250
8	2,585.29667	8	2,749.33833	8	2,913.38000	8	3,077.42167	8	3,241.46333
9	2,588.57750	9	2,752.61917	9	2,916.66083	9	3,080.70250	9	3,244.74417
790	2,591.85833	840	2,755.90000	890	2,919.94167	940	3,083.98333	990	3,248.02500
1	2,595.13917	1	2,759.18083	1	2,923.22250	1	3,087.26417	1	3,251.30583
2	2,598.42000	2	2,762.46167	2	2,926.50333	2	3,090.54500	2	3,254.58667
3	2,601.70083	3	2,765.74250	3	2,929.78417	3	3,093.82583	3	3,257.86750
4	2,604.98167	4	2,769.02333	4	2,933.06500	4	3,097.10667	4	3,261.14833
5	2,608.26250	5	2,772.30417	5	2,936.34583	5	3,100.38750	5	3,264.42917
6	2,611.54333	6	2,775.58500	6	2,939.62667	6	3,103.66833	6	3,267.71000
7	2,614.82417	7	2,778.86583	7	2,942.90750	7	3,106.94917	7	3,270.99083
8	2,618.10500	8	2,782,14667	8	2,946.18833	8	3,110.23000	8	3,274.27167
9	2,621.38583	9	2,785.42750	9	2,949.46917	9	3,113.51083	9	3,277.55250

Table A-14. Conversion of feet to meters

Feet	Meters	Feet	Meters	Feet	Meters	Feet	Meters	Feet	Meters
0	0.0	50	15.24003	100	30.48006	150	45.72009	200	60.96012
1	0.30480	1	15.54483	1	30.78486	1	46.02489	1	61.26492
2	0.60960	2	15.84963	2	31.08966	2	46.32969	2	61.56972
3	0.91440	3	16.15443	3	31.39446	3	46.63449	3	61.87452
4	1.21920	4	16.45923	4	31.69926	4	46.93929	4	62.17932
5	1.52400	5	16.76403	5	32.00406	5	47.24409	5	62.48412
6	1.82880	6	17.06883	6	32.30886	6	47.54890	6	62.78893
7	2.13360	7	17.37363	7	32.61367	7	47.85370	7	63.09373
8	2.43840	8	17.67844	8	32.91847	8	48.15850	8	63.39853
9	2.74321	9	17.98324	9	33.22327	9	48.46330	9	63.70333
10	3.04801	60	18.38804	110	33.52807	160	48.76810	210	64.00813
1	3.35281	1	18.59284	1	33.83287	1	49.07290	1	64.31293
2	3.65761	2	18.89764	2	34.13767	2	49.37770	2	64.61773
3	3.96241	3	19.20244	3	34.44247	3	49.68250	3	64.92253
4	4.26721	4	19.50724	4	34.74727	4	49.98730	4	65.22733
5	4.57201	5	19.81204	5	35.05207	5	50.29210	5	65.53213
6	4.87681	6	20.11684	6	35.35687	6	50.59690	6	65.83693
7	5.18161	7	20.42164	7	35.66167	7	50.90170	7	66.14173
8	5.48641	8	20.72644	8	35.96647	8	51.20650	8	66.44653
9	5.79121	9	21.03124	9	36.27127	9	51.51130	9	66.75133
20	6.09601	70	21.33604	120	36.57607	170	51.81610	220	67.05613
1	6.40081	1	21.64084	1	36.88087	1	52.12090	1	67.36093
2	6.70561	2	21.94564	2	37.18567	2	52.42570	2	67.66574
3	7.01041	3	22.25044	3	37.49047	3	52.73051	3	67.97054
4	7.31521	4	22.55525	4	37.79528	4	53.03531	4	68.27534
5	7.62002	5	22.86005	5	38.10008	5	53.34011	5	68.58014
6	7.92482	6	23.16485	6	38.40488	6	53.64491	6	68.88494
7	8.22962	7	23.46965	7	38.70968	7	53.94971	7	69.18974
8	8.53442	8	23.77445	8	39.01448	8	54.25451	8	69.49454
9	8.83922	9	24.07925	9	39.31928	9	54.55931	9	69.79934
30	9.14402	80	24.38405	130	39.62408	180	54.86411	230	70.10414
1	9.44882	1	24.68885	1	39.92888	1	55.16891	1	70.40894
2	9.75362	2	24.99365	2	40.23368	2	55.47371	2	70.71374
3	10.05842	3	25.29845	3	40.53848	3	55.77851	3	71.01854
4	10.36322	4	25.60325	4	40.84328	4	56.08331	4	71.32334
5	10.66802	5	25.90805	5	41.14808	5	56.38811	5	71.62814
6	10.97282	6	26.21285	6	41.45288	6	56.69291	6	71.93294
7	11.27762	7	26.51765	7	41.75768	7	56.99771	7	72.23774
8	11.58242	8	26.82245	8	42.06248	8	57.30251	7	72.54255
9	11.88722	9	27.12725	9	42.36728	9	57.60732	9	72.84735
40	12.19202	90	27.43205	140	42.67209	190	57.91212	240	73.15215
1	12.49682	1	27.73686	1	42.97689	1	58.21692	1	73.45695
2	12.80163	2	28.04166	2	43.28169	2	58.52172	2	73.76175
3	13.10643	3	28.34646	3	43.58649	3	58.82652	3	74.06655
4	13.41123	4	28.65126	4	43.89129	4	59.13132	4	74.37135
5	13.71603	5	28.95606	5	44.19609	5	59.43612	5	74.67615
6	14.02083	6	29.26086	6	44.50089	6	59.74092	6	74.98095
7	14.32563	7	29.56566	7	44.80569	7	60.04572	7	75.28575
8	14.63043	8	29.87046	8	45.11049	8	60.35052	8	75.59055
9	14.93523	9	30.17526	9	45.41529	9	60.65532	9	75.89535

Table A-14. Conversion of feet to meters (continued)

Feet	Meters								
250	76.20015	300	91.44018	350	106.68021	400	121.92024	450	137.16027
1	76.50495	1	91.74498	1	106.98501	1	122.22504	1	137.46507
2	76.80975	2	92.04978	2	107.28981	2	122.52985	2	137.76988
3	77.11455	3	92.35458	3	107.59462	3	122.83465	3	138.07468
4	77.41935	4	92.65939	4	107.89942	4	123.13945	4	138.37948
5	77.72416	5	92.96419	5	108.20422	5	123.44425	5	138.68428
6	78.02896	6	93.26899	6	108.50902	6	123.74905	6	138.98908
7	78.33376	7	93.57379	7	108.81382	7	124.05385	7	139.29388
8	78.63856	8	93.87859	8	109.11862	8	124.35865	8	139.59868
9	78.94336	9	94.18339	9	109.42342	9	124.66345	9	139.90348
260	79.24816	310	94.48819	360	109.72822	410	124.96825	460	140.20828
1	79.55296	1	94.79299	1	110.03302	1	125.27305	1	140.51308
2	79.85776	2	95.09779	2	110.33782	2	125.57785	2	140.81788
3	80.16256	3	95.40259	3	110.64262	3	125.88265	3	141.12268
4	80.46736	4	95.70739	4	110.94742	4	126.18745	4	141.42748
5	80.77216	5	96.01219	5	111.25222	5	126.49225	5	141.73228
6	81.07696	6	96.31699	6	111.55702	6	126.79705	6	142.03708
7	81.38176	7	96.62179	7	111.86182	7	127.10185	7	142.34188
8	81.68656	8	96.92659	8	112.16662	8	127.40665	8	142.64669
9	81.99136	9	97.23139	9	112.47142	9	127.71146	9	142.95149
270	82.29616	320	97.53620	370	112.77623	420	128.01626	470	143.25629
1	82.60097	1	97.84100	1	113.08103	1	128.32106	1	143.56109
2	82.90577	2	98.14580	2	113.38583	2	128.62586	2	143.86589
3	83.21057	3	98.45060	3	113.69063	3	128.93066	3	144.17069
4	83.51537	4	98.75540	4	113.99543	4	129.23546	4	144.47549
5	83.82017	5	99.06020	5	114.30023	5	129.54026	5	144.78029
6	84.12497	6	99.36500	6	114.60503	6	129.84506	6	145.08509
7	84.42977	7	99.66980	7	114.90983	7	130.14986	7	145.38989
8	84.73457	8	99.97460	8	115.21463	8	130.45466	8	145.69469
9	85.03927	9	100.27940	9	115.51943	9	130.75946	9	145.99949
280	85.34417	330	100.58420	380	115.82423	430	131.06426	480	146.30429
1	85.64897	1	100.88900	1	116.12903	1	131.36906		146.60909
2	85.95377	,	101.19380	2	116.43383	2	131.67386	2	146.91389
3	86.25857	3	101.49860	3	116.73863	3	131.97866	3	147.21869
4	86.56337	4	101.80340	4	117.04343	4	132.28346	4	147.52350
5	86.86817	5	102.10820		117.34823	5	132.58827	5	147.82830
6	87.17297	6	102.41300	6	117.65304		132.89307		148.13310
7	87.47777	7	102.71781	7	117.95784	7	133.19787	7	148.43790
8	87.78258	8	103.02261	8	118.26264	8	133.50267	8	148.74270
9	88.08738	9	103.32741	9	118.56744	9	133.80747	,	149.04750
290	88.39218	340	103.63221	390	118.87224	440	134.11227	490	149.35230
1	88.69698	1	103.93701	1	119.17704	1	134.41707		149.65710
2	89.00178	2	104.24181	2	119.48184	,	134.72187	2	149.96190
3	89.30658	3	104.54661	3	119.78664	3	135.02667	3	150.26670
4	89.61138	4	104.85141	4	120.09144	4	135.33147	4	150.57150
5	89.91618	5	105.15621	5	120.39624	5	135.63627	5	150.87630
6	90.22098	6	105.46101	6	120.70104	6	135.94107		151.18110
7	90.52578	7	105.76581	7	121.00584	7	136.24587	7	151.48590
8	90.83058	8	106.07061	8	121.31064	8	136.55067	8	151.79070
9	91.13538	9	106.37541	9	121.61544	9	136.85547	9	152.09550

Table A-14. Conversion of feet to meters (continued)

Feet	Meters								
500	152.40030	550	167.64034	600	182.88037	650	198.12040	700	213.36043
1	152.70511	1	167.94514	1	183.18517	1	198.42520	1	213.66523
2	153.00991	2	168.24994	2	183.48997	2	198.73000	2	213.97003
3	153.31471	3	168.55474	3	183.79477	3	199.03480	3	214.27483
4	153.61951	4	168.85954	4	184.09957	4	199.33960	4	214.57963
5	153.92431	5	169.16434	5	184.40437	5	199.64440	5	214.88443
6	154.22911	6	169.46914	6	184.70917	6	199.94920	6	215.18923
7	154.53391	7	169.77394	7	185.01397	7	200.25400	7	215.49403
8	154.83871	8	170.07874	8	185.31877	8	200.55880	8	215.79883
9	155.14351	9	170.38354	9	185.62357	9	200.86360	9	216.10363
510	155.44831	560	170.68834	610	185.92837	660	201.16840	710	216.40843
1	155.75311	1	170.99314	1	186.23317	1	201.47320	1	216.71323
2	156.05791	2	171.29794	2	186.53797	2	201.77800	2	217.01803
3	156.36271	3	171.60274	3	186.84277	3	202.08280	3	217.32283
4	156.66751	4	171.90754	4	187.14757	4	202.38760	4	217.62764
5	156.97231	5	172.21234	5	187.45237	5	202.69241	5	217.93244
6	157.27711	6	172.51715	6	187.75718	6	202.99721	6	218.23724
7	157.58192	7	172.82195	7	188.06198	7	203.30201	7	218.54204
8	157.88672	8	173.12675	8	188.36678	8	203.60681	8	218.84684
9	158.19152	9	173.43155	9	188.67158	9	203.91161	9	219.15164
520	158.49632	570	173.73635	620	188.97638	670	204.21641	720	219.45644
1	158.80112	1	174.04115	1	189.28118	1	204.52121	1	219.76124
2	159.10592	2	174.34595	2	189.58598	2	204.82601	2	220.06604
3	159.41072	3	174.65075	3	189.89078	3	205.13081	3	220.37084
4	159.71552	4	174.95555	4	190.19558	4	205.43561	4	220.67564
5	160.02032	5	175.26035	5	190.50038	5	205.74041	5	220.98044
6	160.32512	6	175.56515	6	190.80518	6	206.04521	6	221.28524
7	160.62992	7	175.86995	7	191.10998	7	206.35001	7	221.59004
8	160.93472	8	176.17475	8	191.41478	8	206.65481	8	221.89484
9	161.23952	9	176.47955	9	191.71958	9	206.95961	9	222.19964
530	161.54432	580	176.78435	630	192.02438	680	207.26441	730	222.50445
1	161.84912	1	177.08915	1	192.32918	1	207.56922	1	222.80925
2	162.15392	2	177.39395	2	192.63399	2	207.87402	2	223.11405
3	162.45872	3	177.69876	3	192.93879	3	208.17882	3	223.41885
4	162.76353	4	178.00356	4	193.24359	4	208.48362	4	223.72365
5	163.06833	5	178.30836	5	193.54839	5	208.78842	5	224.02845
6	163.37313	6	178.61316	6	193.85319	6	209.09322	6	224.33325
7	163.67793	7	178.91796	7	194.15799	7	209.39802	7	224.63805
8	163.98273	8	179.22276	8	194.46279	8	209.70282	8	224.94285
9	164.28753	9	179.52756	9	194.76759	9	210.00762	9	225.24765
540	164.59233	590	179.83236	640	195.07239	690	210.31242	740	225.55245
1	164.89713	1	180.13716	1	195.37719	1	210.61722	1	225.85725
2	165.20193	2	180.44196	2	195.68199	2	210.92202	2	226.16205
3	165.50673	3	180.74676	3	195.98679	3	211.22682	3	226.46685
4	165.81153	4	181.05156	4	196.29159	4	211.53162	4	226.77165
5	166.11633	5	181.35636	5	196.59639	5	211.83642	5	227.07645
6	166.42113	6	181.66116	6	196.90119	6	212.14122	6	227.38125
7	166.72593	7	181.96596	7	197.20599	7	212.44602	7	227.68606
8	167.03073	8	182.27076	8	197.51080	8	212.75083	8	227.99086
9	167.33553	9	182.57557	9	$\uparrow 97.81560$	9	213.05563	9	228.29566

Table A-14. Conversion of feet to meters (continued)

Feet	Meters								
750	228.60046	800	243.84049	850	259.08052	900	274.32055	950	289.56058
1	228.90526	1	244.14529	1	259.38532	1	274.62535	1	289.86538
2	229.21006	2	244.45009	2	259.69012	2	274.93015	2	290.17018
3	229.51486	3	244.75489	3	259.99492	3	275.23495	3	290.47498
4	229.81966	4	245.95969	4	260.29972	4	275.53975	4	290.77978
5	230.12446	5	245.36449	5	260.60452	5	275.84455	5	291.98458
6	230.42926	6	245.66929	6	260.90932	6	276.14935	6	291.38938
7	230.73406	7	245.97409	7	261.21412	7	276.45415	7	291.69418
8	231.03886	2	246.27889	8	261.51892	8	276.75895	8	291.99898
9	231.34366	9	246.58369	9	261.82372	9	277.06375	9	292.30378
760	231.64846	810	246.88849	860	262.12852	910	277.36855	960	292.60859
1	231.95326	1	247.19329	1	262.43332	1	277.67336	1	292.91339
2	232.25806	2	247.49809	2	262.73813	2	277.97816	2	293.21819
3	232.56287	3	247.80290	3	263.04293	3	278.28296	3	293.52299
4	232.86767	4	248.10770	4	263.34773	4	278.58776	4	293.82779
5	233.17247	5	248.41250	5	263.65253	5	278.89256	5	294.13259
6	233.47727	6	248.71730	6	263.95733	6	279.19736	6	294.43739
7	233.78207	7	249.02210	7	264.26213	7	279.50216	7	294.74219
8	234.08687	8	249.32690	8	264.56693	8	279.80696	8	295.04699
9	234.39167	9	249.63170	9	264.87173	9	280.11176	9	295.35179
770	234.69647	820	249.93650	870	265.17653	920	280.41656	970	295.65659
1	235.00127	1	250.24130	1	265.48133	1	280.72136	1	295.96139
2	235.30607	2	250.54610	2	265.78613	2	281.02616	2	296.26619
3	235.61087	3	250.85090	3	266.09092	3	281.33096	3	296.57099
4	235.91567	4	251.15570	4	266.39573	4	281.63576	4	29687579
5	236.22047	5	251.46050	5	266.70053	5	281.94056	5	297.18059
6	236.52527	6	251.76530	6	267.00533	6	282.24536	6	297.48539
7	236.83007	7	252.07010	7	267.31013	7	282.55017	7	297.79020
8	237.13487	8	252.37490	8	267.61494	8	282.85497	8	298.09500
9	247.43967	9	252.67971	9	267.91974	9	283.15977	9	298.39980
780	237.74448	830	252.98451	880	268.22454	930	283.46457	980	298.70460
1	238.04928	1	253.28931	1	268.52934	1	283.76937	1	299.00940
2	238.35408	2	253.59411	2	268.83414	2	284.07417	2	299.31420
3	238.65888	3	253.89891	3	269.13894	3	284.37897	3	299.61900
4	238.96368	4	254.20371	4	269.44374	4	284.68377	4	299.92380
5	239.26848	5	254.50851	5	269.74854	5	284.98857	5	300.22860
6	239.57328	6	254.81331	6	270.05334	6	285.29337	6	300.53340
7	239.87808	7	255.11811	7	270.35814	7	285.59817	7	300.83820
8	240.18288	8	255.42291	8	270.66294	8	285.90297	8	301.14300
9	240.48768	9	255.72771	9	270.96774	9	286.20777	9	301.44780
790	240.79248	840	256.03251	890	271.27254	940	286.51257	990	301.75260
1	241.09728	1	256.33731	1	271.57734	1	286.81737	1	302.05740
2	241.40208	2	256.64211	2	271.88214	2	287.12217	2	302.36220
3	241.70688	3	256.94691	3	272.18694	3	287.42697	3	302.66701
4	242.01168	4	257.25171	4	272.49174	4	287.73178	4	302.97181
5	242.31648	5	257.55652	5	272.79655	5	288.03658	5	303.27661
6	242.62129	6	257.86132	6	273.10135	6	288.34138	6	303.58141
7	242.92609	7	258.16612	7	273.40615	7	288.64618	7	303.88621
8	243.23089	8	248.47092	8	273.71095	8	288.95098	8	304.19101
9	243.53569	9	258.77572	9	274.01575	9	289.25578	9	304.49581

APPENDIX B SAMPLE NOTES (CONSTRUCTION SURVEY)

LIST OF FIGURES

Page
B-1. Mailing label B-2
B-2. Front page of notebook B-3
B-3. Index B-4
B-4. Differential leveling B-5
B-5. Horizontal taping B-6
B-6. Station angle traverse B-7
B-7. Station angle with horizon closure B-8
B-8. Deflection angle traverse B-9
B-9. Transit-stadia survey B-10
B-10. Plane table B-11
B-11. Profile and cross-section leveling B-12
B-12. Slope stakes B-13
B-13. Horizontal curve layout B-14
B-14. Building layout B-15
B-15. Sewer line B-16
B-16. Height of an accessible point B-17
B-17. Elevation/distance to an inaccessible point B-18

INTRODUCTION

Keeping good notes is not only an art, it is a science as well. Notes must not only be legible, but also correct and meaningful. You must decide, before you go into the field, how you want to run your survey and how to record your observations. You must also decide which information you must record in order to make your notes meaningful. Keep in mind that extraneous entries in your notes can do just as much harm as omission of pertinent data. Before making any entry in your notebook, make certain that the entry, sketch, or remark is necessary and wil contribute to the completeness of the notes. On the following pages are samples of notes which the construction surveyor may be required to keep. They are only samples of how they may be kept, not of how they must be kept. When assigned to a unit in the field, you will determine what to record and how to do it. Most of the time, the chief of the party will prescribe how notes on the project are to be kept. Above all, decide on your notekeeping procedures and format before you go out on your survey. Your headings, members of party, instrument identification, and weatherman all be entered before you leave for the field.

LABELING AND MAILING PROCEDURES

The surveyor normally fills out the mailing label in front of the notebook to the unit conducting the project(s) (figure B-1).

```
DEPARTMENT OF THE ARMY
    OfFICE OF the chiEF OF ENGINEERS

SP4 IOHNQ DOE
HQ 495 TH ENG. CO (CONST.)
EORT BELVOIR, VA. 22060-5291DEPARTMENT OF THE ARMY
OFFICE OF THE CHIEF OF ENGINEERS
```

HQ 66TH ENG. CO. (CONST.)

```
ATTN: 5-3
EORT BELVOIR, VA 22060-5291

Figure B-1. Mailing label

The front page is to be filled out as required by the unit (figure B-2).

\title{
LEVEL, TRANSIT, AND GENERAL SURVEY RECORD BOOK
}

FORT BELVOIR, VA.
BLDG \(\leqslant\) ROADLAYOUT, NORTH POST PROJECT
sook 2 of 4
\begin{tabular}{|c|c|}
\hline THEODOLITE & WILD - \(7 / 6\) \\
\hline
\end{tabular}

SFC W.d. BROWN
CHIEF OF PARTY

IMPORTANT
On the opposite page, print the oddress to which this book is to be returned, if lost.

Figure B-2. Front page of notebook

\section*{SURVEY NOTES}

The backsight (BS) and foresight (FS) distances are determined by stadia and should be balanced. A page check (PC) is made (figure B-3) for each page. REMEMBER: Page checks only check the accuracy of your mathematics, not the accuracy of the survey.


Figure B-3. Index

The error of closure (EC) is equal to the computed elevation minus the starting or fixed elevation. For total correction (TC), change the sign of the EC . The allowable error (AE) maybe given in the project specifications. The following formulas can be used when the BS and FS distances are balanced as near as possible.

For normal construction work \(-\mathrm{AE}= \pm 0.1 \mathrm{ft}\) miles or \(\pm 24 \mathrm{~mm}\) kilometers
Third order (figure B-4) - \(\mathrm{AE}= \pm 0.05 \mathrm{ft}\) miles or \(\pm 12 \mathrm{~mm}\) kilometers
Elevations for fixed points are adjusted by dividing the TC by the total distance and multiplying the result by the distance from the beginning station to the station being adjusted. This value is then algebraically added to the station's computed elevation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
DIFFERENTIAL LEVELNG \\
15TH CSH MAINT BLDG DESIGNATION
\end{tabular}} & \multicolumn{2}{|l|}{Sate 17 JAN 1984} \\
\hline STA & \(B 5(t)\) & HI & FSC-) & Elin & \[
\begin{aligned}
& 0157 \\
& \text { BS/FS }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Bm1} & 4.71 & & & \(100.00^{\prime}\) & 75 \\
\hline & & 10x71 & & & \\
\hline \multirow[t]{2}{*}{TP 1} & 6.03 & & 0.19 & 103.92 & 110 \\
\hline & & 109.95 & & & \\
\hline \multirow[t]{2}{*}{7892} & 12.06 & & 3.68 & 106.27 & 94110 \\
\hline & & 118.33 & & & \\
\hline \multirow[t]{2}{*}{TP2} & 2.20 & & 4.14 & 113.94 & 24096 \\
\hline & & 2K.04 & & & \\
\hline \multirow[t]{2}{*}{TP3} & 1.43 & & 7.12 & 108.92 & 163242 \\
\hline & & 110.35 & & & \\
\hline \multirow[t]{2}{*}{tam 3} & 5.05 & & 10.37 & 99.98 & 93166 \\
\hline & & 105.03 & & & \\
\hline \multirow[t]{2}{*}{TP4} & 3.64 & & 2.99 & 102.04 & \(110 \quad 95\) \\
\hline & & 105.68 & & & \\
\hline \multirow[t]{2}{*}{TBM4} & 3.86 & & 3.16 & 102.52 & 156112 \\
\hline & & 106.38 & & & \\
\hline \multirow[t]{2}{*}{TP 5} & 3.75 & & 5.49 & 100.89 & \(203 / 52\) \\
\hline & & 104.64 & & & \\
\hline \multirow[t]{6}{*}{\(\beta m 1\)} & & & 4.61 & 100.03 & 204 \\
\hline & 142.73 & & -42.70 & & \(1244 / 1241\) \\
\hline & & & TOTAL D & STANCE \(=\) & 2491 \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}


Figure B-4. Differential leveling

This set of horizontal taping notes (figure B-5) shows the proper way to record distances between points. The lines are taped in both the forward (FWD) and backward (BKWD) direction. The difference between the forward and backward total distances equals the error of closure (EC). The allowable error (AE) is computed by dividing the mean distance (MEAN) by 5,000 . Do not round the AE up. This AE will give an accuracy ratio of 1 in 5,000 or third order accuracy. The AE must equal or exceed the EC for the taping to be acceptable.

HORIZONTALTAPING 15 IH CSH MAINTBLDG
\begin{tabular}{|c|c|c|c|c|c|}
\hline STA & FWD & BKWD & MEAN & & \\
\hline \(B M 1\) & 100.00 & 100.00 & & \(E C=0.04\) & \\
\hline & 100.00 & 100.00 & & \(A E=0.07\) & \\
\hline & 100.00 & 100.00 & & & \\
\hline & 65.31 & 65.27 & & & \\
\hline trmz & 365.31 & 365.27 & 365.290 & & \\
\hline & & & & & \\
\hline TMB2 & 100.00 & 100.00 & & \(E C=0.14\) & \\
\hline & 100.00 & 100.00 & & \(A E=0.19\) & \\
\hline & 100.00 & 100.00 & & & \\
\hline & 100.00 & 100.00 & & & \\
\hline & 100.00 & 100.00 & & & \\
\hline & 100.00 & 100.00 & & & \\
\hline & 100.00 & 100.00 & & & \\
\hline & 100.00 & 100.00 & & & \\
\hline & 100.00 & 100.00 & & & \\
\hline & 99.97 & 99.83 & & & \\
\hline TSM3 & 999.91 & 499.83 & 999900 & & \\
\hline & & & & & \\
\hline 7Sm 3 & 100.00 & 100.00 & & \(E C=0.05\) & \\
\hline & 100.00 & 100.00 & & \(A E=0.08\) & \\
\hline & 100.08 & 100.00 & & & \\
\hline & 50.00 & 60.00 & & & \\
\hline & 60.47 & 50.42 & & & \\
\hline TBm 4 & 410.47 & 410.42 & 410.14'5 & & \\
\hline
\end{tabular}

LYMAN
\(\begin{array}{ll}\text { HT GUESS } & \text { INST: } 100 \text { 'STEEL TAFE } \\ \text { RT RAWLINGS } & \text { TENSION: ROLBS }\end{array}\)


Figure B-5. Horizontal taping

The station angles in figure B-6 were first measured with the instrument's telescope in the direct (D) position. The angle is then doubled by measuring it again with the telescope in the reverse ( R ) position. The mean angle (MEAN) is found by dividing the R value by 2 . The mean angle must be within \(\pm 30\) seconds of the D value. The total of the mean angles should equal \(\mathrm{N}-2(180\) degrees); N is the number of station angles within the loop traverse. When using a one-minute instrument, an error of \(\pm 30\) seconds per station angle is acceptable. The distances recorded were obtained by a separate survey and copied here for completeness.


Figure B-6. Station angle traverse

The station angle in figure B-7 was measured as described on the preceding page. The explement angle is similarly measured and meaned, thus closing the horizon.

Note: When the explement angle was measured in direct (D), its value exceeded 180 degrees. To compute the MEAN first, add 360 degrees to the reverse ( R ) value and divide the result by 2 .

Any mean angle must be within \(\pm 30\) seconds of its D value. The total of both MEAN angles for a station must be within \(\pm 30\) seconds of 360 degrees to be acceptable.
\begin{tabular}{|c|c|c|c|c|c|}
\hline STA & TEL & HoRl & 立 & mean & 4 \\
\hline QA4-0B & D & \(78^{\circ}\) & \(05^{\prime}\) & & \\
\hline & & & & \(78^{\circ}\) & \(5^{\prime} \infty^{\prime \prime}\) \\
\hline 8 & R & \(156^{\circ}\) & \(10^{\prime}\) & & \\
\hline \(\bigcirc 6\) & D & 2810 & \(5{ }^{\prime}\) & & \\
\hline & & & & \(281{ }^{\circ} 5\) & \(1{ }^{\prime} 30 \times\) \\
\hline \({ }^{\circ}\) & R & \(203^{\circ}\) & 491 & & \\
\hline & & & TJTAL & \(359^{\circ}\) & 59'30" \\
\hline & & & & & \\
\hline
\end{tabular}


Figure B-7. Station angle with horizon closure

Figure B-8 shows deflection angles. When the direct (D) value for direction exceeds 180 degrees-
- The deflection angle is computed by subtracting the D value from 360 degrees. The difference is a left deflection angle and is preceded by the letter L.
- The mean deflection angle is computed by subtracting the reverse (R) value from 360 degrees and dividing the difference by 2 . The mean deflection angle is also preceded by the letter \(L\).

When the direct (D) value for direction is less than 180 degrees-
- The deflection angle is the same as the D value and is preceded by the R for right deflection angle.
- The mean deflection angle is computed by dividing the reverse \((\mathrm{R})\) value by 2 . The mean deflection angle is also preceded by the letter R. Deflection angles never exceed 180 degrees. Any mean deflection angle must be with \(\pm 30\) seconds of its D value. The distances (DIST) were obtained from a separate survey.


Figure B-8. Deflection angle traverse

The rod intercept (RI) is the difference between the top and bottom stadia crosshairs. The rod correction ( RC ) is the value of the center crosshair rod reading. Figure B-9 shows notes for RI and RC.

Product (PROD) is determined by multiplying the RI by the difference in elevation value extracted from table A-2 using the vertical angle as the argument. For level shots, the PROD is zero. The PROD can also be computed using the formula: \(\mathrm{PROD}=(\mathrm{RI} \times 100)^{1 ⁄ 2}\) Sin 2 Vertical Angle. The PROD has the opposite sign of the vertical angle when backlighting and the same sign when foresighting. Difference in elevation (DE) is determined by algebraically adding the RC to the PROD. Height of instrument is determined by making a level backsight to a point and adding the RC to the point's known elevation or by determining the vertical angle and the RC, computing the PROD and the DE , then algebraically adding the DE to the known elevation. Zenith distance (ZD) is the angular value between zenith and the RC. Vertical angle (VERT ANGLE) is the angular value between a level line of sight and the RC. Its value and sign are determined by subtracting 270 degrees from the ZD. Horizontal angle (HORIZ ANGLE) is the angle from a beginning reference point to the observed point. Horizontal distance (DIST) is determined for level shots by multiplying the RI by 100. Forinclined shots, multiply the RI times the horizontal distance value from table A-2 using the vertical angle as the argument. The DIST can also be computed using the formula: Horizontal Distance \(=(\) RI x 100 \() \operatorname{Cos}^{2}\) Vertical Angle. ELEV is the elevation of the station. When not given, it is determined by algebraically adding the DE to the HI. Remarks (RMKS) is used to give a brief description of the occupied or observed station.


Figure B-9. Transit-stadia survey

Correct horizontal distance (CORR H DIST) is determined by multiplying the H SCALE by the RI (figure B-10).

Horizontal scale (H SCALE) is read directly on the alidade. Rod intercept (RI) is the difference between the top and bottom crosshairs.
Vertical scale (V SCALE) is read directly on the alidade.
Product (PROD \(\pm\) ) is determined by subtracting 50 from the V-SCALE reading and multiplying the result by the RI.
Rod correction (RC) is the value of the center crosshair rod reading.
The RC is always negative when foresighting.
Difference in elevation (DE) is determined by algebraically adding the ( \(\mathrm{PROD} \pm\) ) to the RC.
Height of instrument (HI) can be determined by measuring the DE above the occupied station or by making a level backsight to station of known elevation. The RC is positive when backlighting.
Elevation (ELEV) is the elevation of the station. When not given, it is determined by algebraically adding the DE to the HI .
Remarks (RMKS) is used to give a brief description of the occupied or observed station.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{plane table mapping designation AREA K \(\qquad\) Date 24 JAN 19 星} & \multicolumn{3}{|l|}{K LYMAN MJones ¢ ALANTON} & \multicolumn{3}{|l|}{IHST: K TE ALIDADE NO 6666} \\
\hline STA & \[
\begin{aligned}
& \hline C O R R \\
& \text { H DIGT } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
H \\
\text { SCALE }
\end{gathered}
\] & RI & \[
\stackrel{V}{\text { SCALE }}
\] & PROD士 & \(R C\) & DE \(\pm\) & HI & ELEV & RM & \\
\hline \(A-7\) & CDE ABO & Lestab & )(BOARD & ORIENTED & On STA A.) & & +4.3 & 116.7 & 112.4 & ELEV & ITA \(B\) \\
\hline \(\bigcirc 1\) & 625 & 100 & 6.25 & 55 & +31.2 & -4.6 & \(+26.6\) & & 143.3 & TPP of & SLOPE \\
\hline 2 & 160 & 100 & 1.60 & 48 & -3.2 & -2.8 & -6.0 & & 110.7 & ROTIOm & DFSLOPE \\
\hline 3 & 199 & 97 & 2.05 & 68 & +36.9 & -8.4 & \(+28.5\) & & 145.2 & 4 Ro & 10 \\
\hline 4 & 368 & 98 & 3.75 & 62 & +45.0 & -7.2 & +37.8 & & 154.5 & \(\varepsilon\) Rol & 40 \\
\hline 5 & 105 & 100 & 1.05 & 54 & +4.2 & -3.9 & \(+0.3\) & & 117.0 & spot E & EEV \\
\hline 6 & 425 & 100 & 4.25 & 47 & -12.8 & -4.4 & -17.2 & & 99.5 & SPOTA & EEVV \\
\hline 7 & 240 & 98 & 2.45 & 37 & -31.8 & -7.5 & -39.3 & & 77.4 & M.H. & \\
\hline 8 & 255 & 100 & 2.55 & 50 & 0 & -5.4 & -5.4 & & \(1 / 1.3\) & POWER & POLE \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

Figure B-10. Plane table

Profile and cross-sectional level notes (figure B-11) are best recorded from the bottom of the page up. This method will align the direction of the survey with the notes. The right page shows the elevations of ground shots and their distance from the road centerline.
\begin{tabular}{lc} 
Ground Elevation & 134.7 \\
Rod Reading & 3.5 \\
Distance from Centerline & 50
\end{tabular}

The ground elevation is determined by subtracting the rod reading from the HI. The distance from the centerline is measured with a tape.

PROFILE CROSS-SECTION LEVELING designation mic CoY ave extender date 25 Jan 1984



Figure B-11. Profile and cross-section leveling

Slope stake notes (figure B-12) are best recorded from the bottom of the page up. This method aligns the direction of the survey with the notes. Grade elevations are normally given in the construction drawings. The grade rod values are determined by subtracting the grade elevation from the HI. The three-part entries on the right page show the amount of cut \((\mathrm{C})\) or fill ( F ), the ground rod reading, and the distance of the slope stake from the road centerline. A detailed method of setting slope stakes can be found in chapter 2

SLOPE STAKES
DESIONATION MISCOY AME EKTENDED OATE 25 JAN 1984
\begin{tabular}{|c|c|c|c|c|c|}
\hline STA & BS & HI & FS & ELEV & GRADE \\
\hline & & & & & \\
\hline TP*1 & & & 3.10 & 133.10 & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \(2+50\) & & & & & 132.1 \\
\hline & & & & & \\
\hline & & & & & \\
\hline \(2+00\) & & & : & & 132.6 \\
\hline & & & & & \\
\hline & & & & & \\
\hline \(1+50\) & & & & & 133.1 \\
\hline & & & & & \\
\hline & & & & & \\
\hline \(1+00\) & & & & & 133.6 \\
\hline & & & & & \\
\hline & & & & & \\
\hline \(0+50\) & & & & & 134.1 \\
\hline & & 136.20 & & & \\
\hline 20*4 & 1.04 & & & 136.16' & \\
\hline
\end{tabular}


Figure B-12. Slope stakes

The right deflection angles (R DEFL) (figure B-13) were extracted from the curve computations (chapter 3). When a road curves to the left, the left deflection angles (L DEFL) are determined by subtracting the R DEFL from 360 degrees. The R DEFL are used to "back-in" a left curve from the point of tangency (PT). When a curve is to the right, the L DEFL need not be computed.


Figure B-13. Horizontal curve layout

The building corner numbers in the sketch must agree with the corner numbers on the left page. In this example, (figure B-14) the building foundation is required to be 1.5 feet above the ground at the highest corner. The batter board elevation (BATTER ELEV) is determined by adding 1.5 feet to the ground elevation (ELEV) of the highest corner. The difference between the BATTER ELEV and the HI equals the grade rod. When a batter board elevation is given, the ground shots are not necessary. The grade rod equals the HI minus the given batter board elevation.

BUILDINGLAYOUT
desionation BLDG T-2855 date 27 JAN 1984
\begin{tabular}{r|c|c|c|c|c}
\hline \hline\(S T A\) & \(B S\) & \(H I\) & \(F S\) & ELEV & \begin{tabular}{c} 
GRADE \\
ROD
\end{tabular} \\
\hline\(B M 18\) & 5.22 & 35.22 & & 30.00 & \\
\hline 1 & & & 4.26 & 30.96 & \\
\hline 2 & & & 4.14 & 31.08 & \\
\hline 3 & & & 4.68 & 30.54 & \\
\hline 4 & & & 4.52 & 30.70 & \\
\hline & & & & & \\
\hline 1 & & & & & 2.64 \\
\hline 2 & & & & & 2.64 \\
\hline 3 & & & & & 2.64 \\
\hline 4 & & & & & 2.64 \\
\hline & & & & & \\
\hline
\end{tabular}


Figure B-14. Building layout

The stations in figure B-15 were foresighted on top of their offset stakes. The invert elevations (INVERT ELEV) were computed using the manhole (M.H.) invert elevation at \(0+00\) and the percent of the slope. The elevation (ELEV) of a station minus the INVERT ELEV equals the amount of CUT at the offset station. The CUT is rounded down to the nearest whole or half foot for the adjusted cut (ADJ CUT). The ADJ CUT assists the construction crew when digging the ditch. The difference between the CUT and ADJ CUT is the distance measured down and marked on the offset stakes. The ADJ CUT value and the offset distance (OFFSET DIST) is also marked on the offset stakes facing the sewer line. The station values are marked on the opposite side figure B-16 and figure B-17 on page B-18).

SEWER LINE
\begin{tabular}{|c|c|c|c|c|c|}
\hline STA & BS & \(H T\) & FS. & ELEV & \[
\begin{aligned}
& \text { TNUERT } \\
& \text { ELEV }
\end{aligned}
\] \\
\hline TBMI & 6.22 & & & 107.38' & \\
\hline & & 113.60 & & & \\
\hline 422.54 & & & 6.43 & 107.17 & 103.95 \\
\hline \(1+00\) & & & 7.01 & 106.59 & 103.15 \\
\hline \(0+75\) & & & 6.32 & 107.28 & 102.26 \\
\hline \(0+50\) & & & 7.46 & 106.14 & 101.37 \\
\hline \(0+25\) & & & 7.84 & 105.76 & 100.49 \\
\hline oteok & (.H) & & 7.70 & 105.70 & 99.60 \\
\hline 73M1 & & & 6.22 & 107.38 & \\
\hline & & & & & \\
\hline & & & & & \\
\hline NOTE: & \(3.55 \%\) & SLOPE & USED & FOR INVE & CT ELEV \\
\hline & & & & & \\
\hline
\end{tabular}


Figure B-15. Sewer line

\section*{B-16}


Figure B-16. Height of an accessible point
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
ELEVATION/DISTANCE TOAN INACCESSIOLE POINT \\
DESIGNATION WATER TOWER DATE 31 JAN 1964
\end{tabular}} \\
\hline STA & TEL & H0RIL \(\times\) & ZD & VERT 4 & DIST \\
\hline WT-91 & \(D\) & \(90^{\circ} 00^{\circ}\) & & & \(300.00^{\circ}\) \\
\hline & & & & & \\
\hline 02 & & & & & \(300.01^{\prime}\) \\
\hline MEAN & & & & & 300.005 \\
\hline \(\mathrm{O}-\mathrm{O}\) & D & \(84^{\circ} 10^{\prime}\) & \(86^{\circ} 42^{\prime}\) & +030 \(18^{\prime}\) & \\
\hline & & & & & \\
\hline \(\omega T\) & \(R\) & \(1689{ }^{\circ}\) & 275 \(18^{\prime}\) & \(\pm 03^{\circ} 18^{\prime}\) & \\
\hline MEAN & & \(29^{\circ} 09^{\prime} 56\) & & +0301800 & " \\
\hline & & & & & \\
\hline & & & & & \\
\hline O2 \(2 \rightarrow\) M \({ }^{\text {c }}\) & \(R\) & \(E L=100.00\) & & & \\
\hline & & \(85=4.75\) & & & \\
\hline & & \(41=104.75\) & & & \\
\hline & & & & & \\
\hline 300.06 & 25 \(\div \cos\) & \(84^{\circ} 09^{\prime} 3\) & \(0^{\prime \prime}=2997\). & \(59^{\prime} 015\) & tance \\
\hline & & & & & \\
\hline TAN \(3^{\circ}\) & \(18^{\prime} \times 294\) & \(47.59=1\) & \(69.96+\) & +104.75 & , \\
\hline & & & 74.71 & ELEVAT1 & \\
\hline & & & & & \\
\hline
\end{tabular}


Figure B-17. Elevation/distance to an inaccessible point

B-18```

